Resume research Publications Openings courses Contact

Publications

| Journals | Conference Proc. | Patents | Invited Lectures | Seminars | Ph.D. Thesis | HDR |

Refereed Journals

  1. Danas K., Nakano, M., Sebald, G., (2025). A continuum magneto-viscoelastic model for isotropic soft magnetorheological elastomers: experiments, theory and numerical implementation, Mech. Mat., 200, 105187. (>doi) >download
  2. Danas K., Reis P. M., (2024). Stretch-independent magnetization in incompressible isotropic hard magnetorheological elastomers, J. Mech. Phys. Solids, 191, 105764. (>doi) >download
  3. Danas, K., (2024). A Unified Theoretical Modeling Framework for Soft and Hard Magnetorheological Elastomers, CISM Series, Electro-and Magneto-Mechanics of Soft Solids: Constitutive Modelling, Numerical Implementations, and Instabilities, Springer Nature Switzerland, (>doi) >download
  4. Hooshmand-Ahoor, Z., Luo, H., Danas, K., (2024). M-Voronoi and other random open and closed-cell elasto-plastic cellular materials: Geometry generation and numerical study at small and large strains, Int. J. Solids Struct., 290, 112680. (>doi) >download
  5. Xenos, S., Aravas, N., Danas, K., (2024). A homogenization-based model of the Gurson type for porous metals comprising randomly oriented spheroidal voids, Eur. J. Mech. / A Solids, 105, 105238. (>doi) >download
  6. Luo, H., Hooshmand-Ahoor, Z., Danas, K., Diani, J., (2023). Numerical estimation via remeshing and analytical modeling of nonlinear elastic composites comprising a large volume fraction of randomly distributed spherical particles or voids, Eur. J. Mech. / A Solids, 101, 105076. (>doi) >download
  7. Moreno-Mateos, M.A., Danas, K., Garcia-Gonzalez, D. (2023). Influence of magnetic boundary conditions on the quantitative modelling of magnetorheological elastomers, Mech. Materials, 184, 104742. (>doi) >download
    - Associated FEniCS files >Visit Zenodo depository
  8. Chang, X., Hallais, S., Danas, K., Roux, S. (2023). PeakForce AFM Analysis Enhanced with Model Reduction Techniques, Sensors, 23, 4730. (>doi) >download
  9. Lucarini, S., Moreno-Mateos, M.A., Danas, K., Garcia-Gonzalez, D. (2022). Insights into the viscohyperelastic response of soft magnetorheological elastomers: Competition of macrostructural versus microstructural players, Int. J. Solids Struct., 256, 111981. (>doi) >download
    - Associated FEniCS files >Visit Zenodo depository
  10. Hooshmand-Ahoor, Z., Tarantino, M. G., Danas K. (2022). Mechanically-grown morphogenesis of Voronoi-type materials: Computer design, 3D-printing and experiments, Mechanics of Materials (173), 104432. (>doi) >download
  11. da Costa Linn L. B., Danas K., Bodelot L. (2022). Towards 4D Printing of Very Soft Heterogeneous Magnetoactive Layers for Morphing Surface Applications via Liquid Additive Manufacturing, Polymers, 14, 1684. (>doi) >download
    - Supplementary Information >download
  12. Mukherjee, D., Danas K. (2022). A unified dual modeling framework for soft and hard magnetorheological elastomers, Int. J. Solids Struct., in press. (>doi) >download
  13. Rambausek, M., Mukherjee, D., Danas K. (2022). A computational framework for magnetically hard and soft viscoelastic magnetorheological elastomers, Comp. Meth. App. Mech. Eng., 391, 114500. (>doi) >download
    - Associated FEniCS and Abaqus files >Visit Zenodo depository
  14. Zerhouni, O., Brisard, S., Danas K. (2021). Quantifying the effect of two-point correlations on the effective elasticity of specific classes of random porous materials with and without connectivity, Int. J. Eng. Science, 166, 103520. (>doi) >download
  15. Chang, X., Halais, S., Roux, S., Danas, K. (2021). Model reduction techniques for quantitative nano-mechanical AFM moded, Meas. Sci. Technol., 32, 075406. (>doi) >download
  16. Dorn, C., Bodelot, L., Danas, K. (2021). Experiments and numerical implementation of a boundary value problem involving a magnetorheological elastomer layer subjected to a non-uniform magnetic field, J. Applied Mechanics, 88(7): 071004. (>doi) >download
    - Associated Abaqus UEL >Visit Zenodo depository
  17. Mukherjee, D., Rambausek, M., Danas K. (2021). An explicit dissipative model for isotropic hard magnetorheological elastomers, J. Mech. Phys. Solids, 151, 104361. (>doi) >download
    - Associated Abaqus UEL >Visit Zenodo depository
  18. Rambausek, M., Danas, K. (2021). Bifurcation of magnetorheological film–substrate elastomers subjected to biaxial pre-compression and transverse magnetic fields, Int. J. Non-Linear Mechanics, 128, 103608. (>doi) >download
  19. Mukherjee, D., Bodelot, L., Danas, K. (2020). Microstructurally-guided explicit continuum models for isotropic magnetorheological elastomers with iron particles, Int. J. Non-Linear Mechanics, 120, 103380. (>doi) >download
  20. Lefèvre V., Danas K., Lopez-Pamies O. (2020). Two families of explicit models constructed from a homogenization solution for the magnetoelastic response of MREs containing iron and ferrofluid particles, Int. J. Non-Linear Mechanics, 119, 103362. (>doi) >download
  21. Psarra, E., Bodelot, L., Danas K. (2019). Wrinkling to crinkling transitions and curvature localization in a magnetoelastic film bonded to a non-magnetic substrate, J. Mech. Phys. Solids, 133, 103734. (>doi) >download
    >Supplementary Material
  22. Tarantino, M.G., Zerhouni, O., Danas, K. (2019). Random 3D-printed isotropic composites with high volume fraction of pore-like polydisperse inclusions and near-optimal elastic stiffness, Acta Materialia, 175, 331-340. (>doi) >download
  23. Tarantino, M.G., Danas, K. (2019). Programmable higher-order Euler buckling modes in hierarchical beams, Int. J. Solids Struct., 167, 170-183. (>doi) >download
  24. Mukherjee, D., Danas, K. (2019). An evolving switching surface model for ferromagnetic hysteresis, J. App. Phys., 125, 033902. (>doi) >download
  25. Spyrou, L., Brisard, S., Danas, K. (2019). Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization, J. Mech. Behavior Biomed. Mater., 92, 97-117. (>doi) >download
  26. Kumar, S., Danas, K., Kochmann, D. (2019). Enhanced local maximum-entropy approximation for stable meshfree simulations, Comput. Meth. App. Mech. Eng., 344, 858-886. (>doi), >download
  27. Zerhouni, O., Tarantino, M. G., Danas K. (2019). Numerically-aided 3D printed random isotropic porous materials approaching the Hashin-Shtrikman bounds, Composites B 156, 344-354. >download
  28. Danas K., Mukherjee, D., Haldar, K., Triantafyllidis, N. (2019). Bifurcation analysis of twisted liquid crystal bilayers, J. Mech. Phys. Solids, 123, 61-79. >download
    >Supplementary Material
  29. Anoukou, K., Brenner, R., Hong, F., Pellerin, M., Danas K. (2018). Random distribution of polydisperse ellipsoidal inclusions and homogenization estimates for porous elastic materials, Computers Struct. 210, 87-101. >download
  30. Psarra E., Bodelot L., Danas K. (2017). Two-field surface pattern control via marginally stable magnetorheological elastomers, Soft Matter, 13 (37), 6576-6584. >download
    >Supplementary Information
    >Movie
  31. Lefèvre V., Danas K., Lopez-Pamies O. (2017). A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, J. Mech. Phys. Solids, 107, 343-364. >download
  32. Cheng L., Danas K., Constantinescu A., Kondo D. (2017). A homogenization model for porous ductile solids under cyclic loads comprising a matrix with isotropic and linear kinematic hardening, Int. J. Solids Struct., 121, 174-190. >download
  33. K. Danas (2017). Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle, J. Mech. Phys. Solids, 105, 25-53. >download
  34. E. Bele, A. Goel, E.G. Pickering, G. Borstnar, O.L. Katsamenis, F. Pierron, K. Danas, V.S. Deshpande (2017). Deformation mechanisms of idealised cermets under multi-axial loading, J. Mech. Phys. Solids, 102, 80-100. >download
  35. Spyrou L., Agoras M., Danas K. (2017). A homogenization model of the Voigt type for skeletal muscle, J. Theor. Biology, 414, 50-61. >download
  36. Sfyris G., Danas K., Wen G., Triantafyllidis N. (2016). Freedericksz instability for the twisted nematic device: A three-dimensional analysis, Phys. Rev. E, 94, 012704. >download
  37. Papadioti I., Danas K., Aravas N. (2016). A methodology for the estimation of the effective yield function of isotropic composites, Int. J. Solids Struct., 87, 120-138. >download
  38. Corrigendum to Papadioti I., Danas K., Aravas N. (2016). Int. J. Solids Struct., 102-103, 321-322. >download
  39. Mbiakop A., Danas K., Constantinescu A. (2016). A homogenization based yield criterion for a plastic Tresca material with ellipsoidal voids, Int. J. Fracture, 200 (1), 209-225. >download
  40. Mbiakop A., Constantinescu A., Danas K. (2015). A model for porous single crystals with ellipsoidal voids, J. Mech. Phys. Solids, 84, 436-467. >download
  41. Mbiakop A., Constantinescu A., Danas K. (2015). A model for porous single crystals with cylindrical voids of elliptical cross-section, Int. J. Solids Struct., 64-65, 100-119. >download
  42. Cao T.-S., Maziere M., Danas K., Besson J., (2015). A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation, Int. J. Solids Structures, 63, 240-263. >download
  43. Mbiakop A., Constantinescu A., Danas K. (2015). On void shape effects of periodic elasto-plastic materials subjected to cyclic loading, Eur. J. Mechanics A/Solids, 49, 481-499. >download
  44. Danas K., Triantafyllidis N. (2014). Instability of a magnetoelastic layer resting on a non-magnetic substrate, J. Mech. Phys. Solids, 69, 67-83. >download
  45. Danas K., Deshpande V.S. (2013). Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations, Model.Simul. Mater. Sci. Engin., 21, 045008. >download
  46. Lopez-Pamies O., Goudarzi T., Danas K., (2013). The nonlinear elastic response of suspensions of rigid inclusions in rubber: II - A simple explicit approximation for finite-concentration suspensions, J. Mech. Phys. Solids, 61, 19-37. >download
  47. Danas K., Deshpande V.S., Fleck N.A., (2012). Size effects in the conical indentation of an elasto-plastic solid, J. Mech. Phys. Solids, 60, 1605-1625. >download
  48. Danas K., Ponte Castañeda P., (2012). Response to the comments by Hucthinson and Tvergaard, Int. J. Solids Structures, 49, 3486. >download
  49. Danas K., Ponte Castañeda P., (2012). Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, Int. J. Solids Structures, 49, 1325-1342. >download
  50. Danas K., Aravas N., (2012). Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations, Composites: Part B 43, 2544-2559. >download
  51. Danas K., Kankanala S.V., Triantafyllidis N., (2012). Experiments and modeling of iron-particle-filled magnetorheological elastomers, J. Mech. Phys. Solids, 60, 120-138. >download
  52. Danas K., Deshpande V.S., Fleck N.A., (2010). Compliant interfaces: a mechanism for relaxation of dislocation pile-ups in a sheared single crystal, Int. J. Plasticity, 26, 1792-1805. >download
  53. Danas K., Ponte Castañeda P. (2009). A finite-strain model for viscoplastic anisotropic porous media: I- Theory, Eur. J. Mechanics A/Solids, 28, 387-401. >download
  54. Danas K., Ponte Castañeda P. (2009). A finite-strain model for viscoplastic anisotropic porous media: II- Applications, Eur. J. Mechanics A/Solids, 28, 402-416. >download
  55. Danas K., Idiart M. I., Ponte Castañeda P. (2008). A homogenization-based constitutive model for isotropic viscoplastic porous media, Int. J. of Solids and Structures, 45, 3392-3409. >download
  56. Danas K., Idiart M. I., Ponte Castañeda P. (2008). A homogenization-based constitutive model for two-dimensional viscoplastic porous media, Special Edition for H.D. Bui on Duality, inverse problems and nonlinear problems in solid mechanics, edited by J.B. Leblond and X. Markenscoff, C.R. Mécanique 336, 79-90. >download
  57. Idiart M. I., Danas K., Ponte Castañeda P. (2006). Second-order estimates for nonlinear composites and application to isotropic constituents, C.R. Mécanique 334, 575-581. >download

Conference Proceedings

  1. (Best Poster Award) Psarra, E., Bodelot, L., Danas K. (2017). Instability of MRE film – substrate block under magneto-mechanical loadingsy, CSMA, Giens, France. >download
  2. Tarantino, M.G., Caruel, M., Danas K. (2017). Buckling response of architectured columns: controlling instability across the scales through a rational design, CSMA, Giens, France. >download
  3. Voropaieff, J.-P., Bodelot, L., Danas K., Triantafyllidis, N. (2017).Modeling and Identification of the constitutive behavior of magneto-rheological elastomers, CSMA, Giens, France. >download
  4. Haldar, K., Danas, K., Triantafyllidis, N. (2017). Bilayer Liquid Crystal and Freedericksz Instability, GACM Colloquium on Computational Mechanics, Stuttgart, Germany. >download
  5. Danas K., (2015). A variational principle for numerical homogenization of periodic magnetoelastic composites, CFM, Lyon, France. >download
  6. Pössinger T., Bodelot L., Bolzmacher C., Danas K., Triantafyllidis N., (2015). Experimental Characterization, Modeling and Simulation of Magneto-Rheological Elastomers, 9th European Solid Mechanics Conference, ESMC15, Leganés-Madrid, Spain. >download
  7. Pössinger T., Bolzmacher C., Bodelot L., Danas K., Triantafyllidis N., (2014). Magneto-mechanical characterization of magnetorheological elastomers, 16th International Conference on Experimental Mechanics, ICEM16, Cambridge, UK. >download
  8. Mbiakop A., Carpiuc A., Constantinescu A., Danas K. (2013). Cyclic behavior of elasto-plastic porous materials subjected to triaxial loading conditions, CSMA13, Giens, France. >download
  9. Triantafyllidis N., Danas K., (2012). Magnetorheological Elastomers, MecaMat, Aussois, France. >download
  10. Danas K., Kankanala S.V., Triantafyllidis N. (2011). Magnetorheological Elastomers: Experiments and Modeling, CSMA, Giens, France. >download
  11. Danas K., Ponte Castañeda P. (2011). Failure of elasto-plastic porous materials subjected to triaxial loading conditions, CSMA, Giens, France. >download
  12. Danas K., Idiart M.I., Ponte Castañeda P. (2007). Homogenization-based constitutive models for two-dimensional viscoplastic porous media with evolving microstructure, Jeulin, D. and Forest, S., (Eds.). In: Continuum Models and Discrete Systems (CMDS 11). Mines-Paris Tech, Paris, 143-148. >download
  13. Danas K., Ponte Castañeda P. (2005). Porous power-law composites: Yield surfaces and evolution of microstructure, Mecamat, Aussois, France. >download

Patents

  1. Pössinger T, Bodelot L., Danas K., Triantafyllidis N., Bolzmacher C. (2015). Test specimen for a magnetorheological elastomeric material, French Patent No: 15 59468, Issued October, 5, 2015.

Invited Lectures

  1. (Invited speaker) A unified homogenization-guided modeling approach for soft and hard magnetorheological elastomers, Aussois, 2021 (COVID, online talk).
  2. (Invited speaker) The realm of magnetorheological elastomers: experiments, theory and instabilities, APS March Meeting, Denver, CO, 2020 (COVID, uploaded talk).
  3. (Keynote talk) Modeling of magnetorheological elastomers: from material to device, MSE Congress, Germany 2020 (COVID, online talk).
  4. (Invited talk) Experiments, modeling and instabilities of magnetorheological elastomers, Symposium to Honor Prof. Lalit Anand for the Prager Medal, SES, Madrid, Spain, 2018.
  5. (Invited talk) Microstructured magnetorheological elastomers: numerical modeling, experiments and tailored instabilities, Symposium in Honor of the 60th birthday of Prof. N.A. Fleck, ESMC, Bologna, Italy 2018.
  6. (Invited talk) Micromechanical modeling of porosity growth and ratcheting under cyclic loading and 3D printing, IUTAM, Copenhagen, Denmark, 2018.
  7. (Invited talk) Recent Advances in Mathematics and Mechanics of Materials, Workshop, Rome, Italy, 2017.
  8. (Invited talk) An analytical model for porous single crystals with ellipsoidal voids, ICTAM, Montreal, Canada, 2016.
  9. (Invited talk) A class of analytical models for porous single crystals with ellipsoidal voids, GAMM Workshop on Microstructures, Paris, France, 2016.
  10. (Invited talk) Recent advances in experiments and modeling of magnetorheological elastomers, GDR MEPHY Workshop, Agay, France, 2015.
  11. Theoretical, numerical and experimental investigations of active magneto- and electro- elastic materials (4.5 hours), COMMAS Summer School, University of Stuttgart, Germany, 2015.
  12. (Invited lecture) Modeling of porous materials consisting of isotropic and anisotropic matrix and implications on deformation localization, IUTAM Symposium: Ductile Fracture and Localization, Paris, France, 2015.
  13. (Invited lecture) Magnetorheological elastomers: from micro-deformation mechanisms to macroscopic instabilities and applications, IUTAM Symposium, Paris, France, 2014.
  14. (Invited lecture) Recent advances in the modeing of electro- and magneto-active materials, IUTAM Symposium, Evanston, IL, U.S.A, 2014.
  15. (Invited lecture) Elasto-plastic porous materials: Nonlinear homogenization and numerical implementation under various loading conditions, GAMM meeting, Erlangen-Nuremberg, Germany, 2014.
  16. (Plenary Lecture) Influence of the Lode parameter and the stress triaxiality on the localization of elasto-plastic porous materials, IDDRG, Zurich, Switzerland, 2013.
  17. (Invited lecture) Deformation mechanisms in iron-particle magnetorheological elastomers, EUROMECH 550, Poitiers, France, 2013.
  18. (Invited Lecture together with Nick Triantafyllidis) Magnetorheological Elastomers, MecaMat, Aussois, France, 2012.
  19. (Keynote Lecture) Failure of elasto-plastic porous materials due to void shape effects and void growth, Congres Francais de Mecanique, Besancon, France, 2011.

Seminars

  1. Magnetorheological elastomers and instabilities: theory, experimental aspects and numerical modeling (2021), Magdeburg Universität, Germany (online).
  2. Recent developments in soft and hard magnetorheological elastomers (2021), LMA, Marseille, France.
  3. Recent developments in soft and hard magnetorheological elastomers (2020), LMT, ENS Paris-Saclay, France.
  4. Recent developments on the study of magnetorheological elastomers (2020), University of Colorado Boulder, CO, USA.
  5. From Architected Mechanical and Magnetoelastic Polymers to Hierarchical Instabilities (2019), General Seminar, Intitut d’Alembert, Sorbonne University (Paris VI), Paris, France.
  6. Microstructured Magnetorheological Elastomers and Instabilities (2019), Applied Mechanics Seminar, Harvard University, Cambridge, MA, U.S.A.
  7. Microstructured Magnetorheological Elastomers and Instabilities (2019), Engineering Seminar, Brown University, Providence, RI, U.S.A.
  8. Microstructured Magnetorheological Elastomers and Instabilities (2019), IMDEA Materials, Madrid, Spain.
  9. Tailoring Instabilities in Microstructured MREs: Experiments, Numerical Analysis and Theory (2018), LSPM, University Paris 13, Paris, France.
  10. Tailoring Instabilities in Microstructured MREs: Experiments, Numerical Analysis and Theory (2018), GDR Polymers, Mines ParisTech, Paris France.
  11. Tailoring Instabilities in Microstructured MREs: Experiments, Numerical Analysis and Theory (2017), Department of Aerospace Engineering and Engineering Mechanics, Austin, TX, USA.
  12. Magneto-Rheological elastomers and elasto-plastic materials: from micro-deformation mechanisms to instabilities (2016), IMDEA Materials, Madrid, Spain.
  13. Magneto-Rheological elastomers: from micro-deformation mechanisms to macroscopic instabilities and applications (2015), Civil and Enviromental Engineering Department, Georgia Tech, U.S.A
  14. Magneto-Rheological elastomers: from micro-deformation mechanisms to macroscopic instabilities and applications (2015), Center for Micromechanics, Engineering Department, Cambridge University, U.K.
  15. Magneto-Rheological elastomers: from micro-deformation mechanisms to macroscopic instabilities and applications (2015), Soft Matter Group, Department of Physics, Leiden University, Netherlands.
  16. Micro-deformation mechanisms of particle-filled magnetorheological elastomers: experiments, theory and numerics (2013), MCE, California Institute of Technology, U.S.A.
  17. Particle impregnated magnetorheological elastomers: experiments, theory and numerics (2012), MSME, Universite Paris-Est, Marne La Vallee, France.
  18. Particle impregnated magnetorheological elastomers: experiments, theory and numerics (2012), Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN, U.S.A. >download
  19. Modelling size effects and dislocation climb in single crystals with discrete dislocation dynamics and strain gradient plasticity theories (2010), State University of New York, Stony Brook, U.S.A.
  20. Discrete Dislocation Dynamics and Strain Gradient formulations: a way to model size effects in plasticity (2010), University of Pierre et Marie Curie (Paris VI), Paris, France. >download
  21. Discrete Dislocation Dynamics and Strain Gradient formulations: a way to model size effects in plasticity (2010), LMS Graduate Seminar, Ecole Polytechnique, Palaiseau, France.
  22. Size effects in plasticity: Discrete Dislocation Dynamics and Strain Gradient Plasticity formulations (2009), University of Cambridge, Cambridge, U.K.
  23. Size effects in plasticity: Discrete Dislocation Dynamics and Strain Gradient Plasticity formulations (2009), University of Oxford, Osxford, U.K.
  24. Porous materials with evolving microstructure: A homogenization approach, EPFL Lausanne, 2008, Switzerland.
  25. Homogenization-based constitutive models for porous media with evolving microstructure, Departmental MEAM Seminar, University of Pennsylvania, 2007.

Ph.D. Thesis

    Porous materials with evolving microstructure: constitutive modeling, numerical implementation and applications >download

HDR Thesis

    Soft and Metallic Microstructured Solids: Theory, Modeling and Experiments.

| Journals | Conference Proc. | Patents | Invited Lectures | Seminars | Ph.D. Thesis | HDR |