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Résumé — This work proposes an analysis of the effect of cyclic loading of elasto-plastic porous ma-

terials upon the microstructure evolution and possible failure of the material due to low cycle fatigue.

In order to investigate this effect, periodic FEM unit-cell calculations are carried out subjected to va-

rious stress triaxialities and Lode angles. The present results indicate that the absolute value of the stress

triaxiality as well as of the value of the Lode angle are critical for the microstructure evolution and the

subsequent material response. In addition, even though the macroscopic applied strains are relatively

small, i.e., in the order of a few per cent, the local strains obtained near the pore surface can increase

significantly (even more than 100%) due to significant localization of the deformation. This in turn leads

to a critical evolution of the pore shape and as a consequence to porosity evolution.

Mots clés — Elasto-plasticity, Porous materials, Cyclic loading, Homogenization.

1 Introduction

Although significant advances have been made these last years in ductile fracture and monotonic

loading conditions, a lot of questions remain open in the domain of cyclic response of materials. In

particular, large amount of experimental data [1, 2] has shown a strong dependence of the material cyclic

response upon the applied pressure. In this regard, consideration of a porous-matrix material system

allows for a physical interpretation of pressure-dependent cyclic responses. More precisely, non linear

homogenization models [3, 4] and micromechanical models [5] for elasto-plastic porous materials have

been used for the prediction of material softening mainly due to the porosity evolution under monotonic

loading conditions. To achieve that, a precise prediction of the evolution of the microstructure is needed

(e.g., evolution of volume, shape and orientation of voids). On the other hand, many numerical and

analytical results have been obtained concerning the influence of stress triaxiality [6, 7], denoted here as

XΣ, and defined as the ratio between the mean stress to the von Mises equivalent or effective deviatoric

stress. Recently, the effects of the third stress invariant, through the Lode angle [8, 9] in monotonic

loading states have also been investigated. Nevertheless, much less has been studied in the context of

cyclic loading conditions [10, 11] with a main emphasis on axisymmetric loading states. Even if in

the majority of studies in the bibliography, cyclic response is analyzed using small strain calculations

considering macroscopic strain amplitudes in the range of 1%− 5%, local strains can be in excess of

100% due to strong localization of the deformation around impurities or voids as is the present case. For

that reason, it is critical that a finite deformation analysis is carried out. In this regard, the scope of this

study is to investigate the effect of cyclic loading conditions and finite deformations upon microstructure

evolution and material softening/hardening using FEM periodic unit-cell calculations with 3D geometry.

2 Problem formulation

In this section, we define the geometry and loading conditions used in the present study. In addi-

tion, we identify the relevant microstructural parameters needed to analyze the results of the following

sections.
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2.1 Geometry, mesh and loading conditions

Three dimensional model studies are carried out for a cubic unit-cell with a spherical void at the

center, as shown in Fig. 1. The initial side length of the unit-cell is 2L, and the initial void radius is a.

In this study, we apply purely triaxial stress states together with periodic boundary conditions which are
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Fig. 1 – Three-dimensional geometry of the a cubic unit-cell with a void at the center and mesh of the 1/8 cut of

the complete geometry.

formally defined via

σ ·n anti−periodic, v = D ·x+v∗, v∗ periodic. (1)

In this relation, σ and D denote the average stress and strain-rate fields in the unit cell respectively, n the

normal to the exterior face of the unit cell, v = u̇ the velocity field, and v∗ is a periodic velocity field [12].

Moreover, the principal directions of the loading are aligned with the normal of the symmetry planes, so

the external faces of the cell remain straight [12] and hence only 1/8 of the unit cell is considered, as

shown in Fig. 1.
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Fig. 2 – Components of normalised stress 3σi/2σeq, i = 1,2,3 as a function of the Lode angle θ in the case of (a)

XΣ = 2/3 and (b) XΣ = 3.

It is useful to define at this point the overall stress triaxiality, XΣ, and average Lode angle, θ, such

that

XΣ =
σm

σeq

, cos (3θ) =
27

2
det

(

σ
′

σeq

)

, σm =
1

3
σkk, σeq =

√

3

2
σ
′ : σ′, (2)

with σ
′ denoting the stress deviator. Using the definition of equation (2), one can write the principal

components of the stress field as a function of XΣ and θ, via

3

2σeq

{σ1,σ2,σ3}=
{

−cos
(

θ+
π

3

)

,−cos
(

θ−
π

3

)

,cos θ

}

+
3

2
XΣ{1,1,1}. (3)

The graphical illustration of the above relation is shown in Figure 3, where the normalzed stress compo-

nents, 3σi/2σeq are shown as a function of Lode angle for two different triaxialities (a) XΣ = 2/3 and (b)

XΣ = 3, respectively. Note that due to the periodicity of the functions used in equation (3), every 60° the

three principal stresses interchange values.
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Fig. 3 – Schematic explanation of the application of the cyclic loading and the corresponding qualitative values of

(a) the applied displacement u, (b) the applied stress triaxiality XΣ and (c) the applied Lode angle θ as a function

of time for one cycle.

Using the above definitions, in the present study, each cycle is divided in 4 steps. Each step of each

cycle is shown in Fig. 1a, where the displacement u, initially increases from O to A (step 1), unloads

from A to B (step 2), reversely loads from B to C (step 3) and unloads from C to D (step 4) defining

thus an entire cycle. The average strain-rate D is evaluated such that the stress triaxiality XΣ and Lode

angle θ remain constant in each step, as shown in Fig. 1b and Fig. 1c. Note in these figures that in order

to obtain full stress reversibility, XΣ has to change sign and θ has to jump to θ+ π between A-D. For

convenience, hereafter, the notations XΣ and θ are used to denote unambiguously the absolute value of

the stress triaxiality and the initial value of the Lode angle in each cycle.

In the present calculations, standard J2 plasticity theory was used to describe the behavior of the

matrix together with an isotropic strain hardening law given by

σy = σ0

(

1+
ε

p

ε0

)1/N

, ε0 = σ0/E. (4)

Here, σ0 and ε0 denote the initial yield stress and yield strain of the matrix material, N is the hardening

exponent and E the Young’s modulus. In the present calculations, the representative values N = 10,

E = 1000σ0 and Poisson ratio ν= 0.3 are used. The effect of these parameters upon the unit-cell response

will be explored elsewhere due to restriction in space.

2.2 Evolution of the microstructure

In this section, we define the variables used to characterize the evolution of the microstructure, i.e.,

the change in volume and shape of the void. More specifically, the porosity is defined as f = Vv/V =
1−Vm/V , where Vv is the volume of the void, Vm is the volume of the matrix and V = Vm +Vv is the

total volume of the unit cell. Here Vm is calculated as the sum of each element volume, while the unit-

cell volume V is evaluated using the coordinates of the upper corner node since due to symmetry of the

microstructure and the loading conditions the external faces of the cell remain straight[12].

Due to the finite deformations considered in this study, significant changes in the pore shape are

observed. Therefore, appropriate geometrical quantities need to be introduced in order to evaluate these

pore shape changes. First, the void shape is characterized by two aspect ratios w1 = a3/a1 and w2 = a3/a2

where 2ai (with i = 1,2,3) denote the lengths of the principal axes of the void, as shown on Fig. 4a where

only 1/8 of the void geometry is shown. As a second measure of the pore geometry change, we have

also defined an ellipsoidicity ratio. This ratio has been introduced as a measure of the divergence of

the void geometry from an equivalent perfect ellipsoid, as depicted in Fig. 4b. While a large number of

options can be used to identify this difference, use is made here of a simple measure. First, we set the

axes of the ideal ellipsoid equal to the length of the actual void axes. Then, the volume of that ellipsoid,

Ve, will in general be different from that of the void Vv due to the nonlinearity of the matrix phase and

the interactions of the neighboring voids of the periodic composite. As a result the ellipsoidicity ratio

Ve/Vv gives the difference of the actual void shape from that of a perfect ellipsoid. Consequently, if the

ellipsoidicity is close to unity, the void shape remains almost an ellipsoid.

The above definitions definitions will be used in the following to analyze and understand the micro

mechanisms that lead to an overall material softening due to the applied cyclic loading conditions.
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Fig. 4 – (a) Schematic representation of 1/8 of the surface of a perfect ellipsoidal void. (b) Qualitative cross-

section in the 1− 2 plane where the qualitative difference between the actual void shape and an ideal ellipsoid

shape having the same aspect ratios with the actual void is shown.

3 Results

In this section, we discuss the results obtained by the previously described loading conditions. In this

work, two different values of the stress triaxiality XΣ = 2/3,3 and three different values of the Lode angle

θ = 0o,30o,60o are used. For the lower triaxiality XΣ = 2/3, we set the macroscopic strain amplitude

u/L = 5% and for the high triaxiality XΣ = 3, we set the macroscopic strain amplitude u/L = 1%. The

difference in amplitudes has been introduced to accelerate the number of cycles leading to material

softening and/or localization of the strain as will be shown in the next. Moreover, for convenience with

the meshing, we use an initial porosity f0 = 0.01, which corresponds to a void radius a/L = 0.2673.

a) b)
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Average value
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Minimum value

Fig. 5 – Qualitative description of the cyclic response of a variable A as a function of the number of cycles Nr.

The minimum, maximum and average values of A are extracted by the corresponding cyclic response.

In order to clarify further the following results, we include Fig. 5, where for a given variable (e.g.,

porosity, aspect ratios, ellipsoidicity, etc), the average per cycle is defined as the arithmetic mean of the

maximum and the minimum value per cycle. In the following, only average values will be shown except

for the stress where the maximum von Mises stress will be shown.

In Fig. 6, we show the maximum equivalent Von Mises stress per cycle σeq as a function of the

number of cycles Nr for triaxiality XΣ = 2/3 (and amplitude u/L = 5%) and XΣ = 3 (and u/L = 1%) as

well as for three Lode angles θ = 0,30,60o. As we can observe in Fig. 6a, for XΣ = 2/3, the effect of the

Lode angle on the estimation of σeq is rather weak similar to the one for XΣ = 3 in Fig. 6b. Nonetheless,

for XΣ = 3, we show that σeq reaches a maximum after nearly 25 cycles while no such observation can

be made for XΣ = 2/3. This result confirms exactly that the triaxiality is a critical parameter in cyclic

loading. In particular in Fig. 6b, for XΣ = 3, we observed that the σeq for θ= 0o shows a more pronounced

decrease than the two other cases, i.e., θ = 30° and θ = 60°.

In order to explain the maximum σeq for XΣ = 3, we show in Fig. 7 the porosity f as a function of

the number of cycles Nr for the same set of stress trivialities and Lode angles. The main observation

in the context of this figure is that while the porosity increases weakly for XΣ = 2/3 in Fig. 7a for all

4



a) b)

Number of cycles, Nr

M
ax

im
u

m
 s

tr
es

s,
 σ

eq

X   = 2/3,  u/L = 5 %
�

θ = 60  (σ = σ > σ ) 
1 2 3

θ = 0  (σ > σ = σ ) 
1 2 3

θ = 30  (σ > σ > σ ) 
1 2 3

Number of cycles, Nr

θ = 0  (σ > σ = σ ) 
1 2 3

θ = 30  (σ > σ > σ ) 
1 2 3

θ = 60  (σ = σ > σ ) 
1 2 3

X   = 3,  u/L = 1 %
Σ

M
ax

im
u
m

 s
tr

es
s,

 σ
eq

Fig. 6 – Maximum equivalent Von Mises stress evolution in the case of (a) u/L= 5%, XΣ = 2/3 and (b) u/L= 1%,

XΣ = 3 as a function of the number of cycles Nr.
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Fig. 7 – Porosity evolution in the case of (a) u/L = 5%, XΣ = 2/3 and (b) u/L = 1%, XΣ = 3 as a function of the

number of cycles Nr.

Lode angles, when XΣ = 3 is considered in Fig. 7b, we observe a very important increase of f which

is in the order of f ∼ 4 f0. It is therefore easy to conclude that this substantial increase of f in the case

of XΣ = 3 leads to the corresponding decrease of σeq in Fig. 6b. In addition, one can also observe a

more pronounced dependence of the porosity evolution on the Lode angle θ for both stress triaxialities,

especially in the case of XΣ = 3. It should be noted here that calculations have stopped after nearly 60

cycles for XΣ = 3 and θ = 0 and θ = 30° as a result of strong deformation localization around the void

as will be discussed in the following. These results obviously reveal the effect of stress triaxiality and

Lode parameter upon porosity ratcheting, which is – as expected – more pronounced at higher stress

triaxialities.

In order to understand, however, the porosity growth after several cycles, we examine, next, the more

local void geometry changes. More specifically, Fig. 8 and Fig. 9 show the evolution of the aspect ratios

w1 and w2, respectively as a function of the number of cycles Nr for the same set of stress triaxialities

and Lode angles considered previously. The main observation in the context of these two figures is that

the evolution of the average aspect ratios w1 and w2 is non-negligible with increasing number of cycles.

It is, in fact, observed that due to the applied finite deformations, the shape of the void changes from the

very first cycle and it tends to grow further as the number of cycles increases. Even more interestingly,

the largest change in the void shape occurs for higher stress triaxialities, i.e., XΣ = 3, as shown in Figs. 8b

and 9b, contrary to the case of XΣ = 2/3 where both aspect ratios increase but in weaker manner. This

result is not intuitive if one extrapolates the knowledge obtained in the context of monotonic loadings

(see for instance [13]), where the largest void shape changes occur usually for lower stress triaxialities.

On the other hand, regarding the evolution of the aspect ratio w1, in Fig. 8, we observe that the effect

of the Lode parameter is much stronger in the case of the lower triaxiality XΣ = 2/3, while it becomes

negligible for XΣ = 3. On the other hand, as shown in in Fig. 9, the evolution of the aspect ratio w2 is
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Fig. 8 – Evolution of the aspect ratio w1 in the case (a) u/L = 5%, XΣ = 2/3 and (b) u/L = 1%, XΣ = 3 as a

function of the number of cycles Nr.
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Fig. 9 – Evolution of the aspect ratio w2 in the case (a) u/L = 5%, XΣ = 2/3 and (b) u/L = 1%, XΣ = 3 as a

function of the number of cycles Nr.

strongly dependent upon the Lode angle θ for both stress triaxialities. Note further that for θ = 60o (i.e.,

σ1 = σ2, w1 = w2 during the entire deformation process, while for θ = 0o (i.e., σ2 = σ3), and w2 = a3/a2

is close to unity.

At this point, however, we note that the evolution of the void shape does not describe adequately

the deformation mechanisms near the void surface. In fact, for most of the computations presented here

(except for the case of θ = 60o) significant localization of the deformation occurs at the surface of the

void. To illustrate this, we show, in Fig. 10a, a contour of the deformed unit-cell at 40cycles for u/L= 5%,

Lode angle of θ = 0 and a stress triaxiality of XΣ = 2/3. In this contour, we observe a strong localization

of the deformation (strains exceeding 300%) in a single line of elements. This same type of localization

has been observed in all computations, i.e. for XΣ = 2/3 and XΣ = 3 except for θ = 60°. In this last

case, Fig. 10b shows that the void elongates significantly along the x3 axis, i.e., along the direction of the

minimum absolute stress component (since for θ = 60o, |σ1|= |σ2|> |σ3|) and gives rise to coalescence

with the neighboring void in this direction. It should be noted here that the observed localization affects

only a small region of the void surface and inevitably leads to strong mesh dependence at the local level.

As will be seen later, however, this mesh dependence affects only local quantities (such as the aspect

ratio) but not macroscopic quantities such as the macroscopic stress, and the porosity evolution.

To assess further the effects of the localization upon the void shape changes, we show in Fig. 11,

the ellipsoidicity ratio Ve/V v (defined in the previous section) as a function of the number of cycles Nr.

In these graphs, the ellipsoidicity ratio reaches high values (more than 1.5) after 30 and 40 cycles for

the cases XΣ = 2/3, θ = 0 and XΣ = 3, θ = 0, respectively, as a result of the corresponding deformation

localization around the pore surface. The same remark can be made for XΣ = 2/3, θ = 30° and XΣ = 3,

θ = 30° but with somewhat lower values of ellipsoidicity, in the order of 1.1−1.5 after 40 and 60 cycles,

respectively. In contrast, the ellipsoidicity is the smallest (and less than 1.2) for θ = 60 in both cases,
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Fig. 10 – Contours of the maximum principal logarithmic strain for (a) u/L = 5%, θ = 30o and XΣ = 1 and (b)

u/L = 1%, θ = 60, XΣ = 3.
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Fig. 12 – (a) Average porosity f and (b) aspect ratio w1 for 2× 104, 5× 104 and 105 number of elements.

which is in agreement with the observations made in the context of Fig. 10b.

As a result of the presence of deformation localization, local measures such as the aspect ratios are

mesh sensitive, whereas, interestingly, average measures, such as, porosity, average stress or strain are

not strongly mesh dependent. This is validated by carrying out calculations with 2×104, 5×104 and 105

20−node hexahedral quadratic isoparametric elements as shown in Fig. 12. In the present study, use is

made of 5×104 elements.
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4 Discussion

In this work we have investigated the effects of cyclic loading conditions upon microstructure evo-

lution and material softening/hardening using FEM periodic unit-cell calculations at finite deformations.

It has been found that the stress triaxiality has a significant effect upon the cyclic response of the unit

cell. In contrast, the Lode angle has a significant impact on the evolution of local variables such as the

aspect ratios and the ellipsoidicity ratios but has only a weak effect on the macroscopic measures such

as the stress and the porosity evolution as a function of the number of cycles. While porosity ratcheting

has been observed in both stress triaxialities used in this study, porosity growth has been found to be

more important only for the higher stress triaxiality. In this connection, it has also been found that the

aspect ratios evolve more in the case of higher stress triaxialities than in lower ones, but more studies

are needed to clarify the interplay of these two micro structural variables on the overall material res-

ponse when subjected to cyclic loading. Finally, strong deformation localization has been observed in all

computations performed here (except for Lode angle θ = 60o which corresponds to |σ1| = |σ2| > |σ3|.
This localization, which remains near the void surface and does not extend to the exterior faces of the

unit-cell, gives rise to a markedly non-ellipsoidal void shape evolution and as a result an ellipsoidicity

ratio has been introduced to assess the quantitative character of this effect.
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