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ABSTRACT: In this study, we present a model based on the “second-order” non-
linear homogenization method for estimating the macroscopic response and the evolu-
tion of microstructure in two-dimensional viscoplastic porous media. The estimates of
the new model are compared with unit cell finite element calculations and the earlier
“variational” nonlinear homogenization method. The three methods are compared for
uniaxial tension and compression, as well as for simple shear loadings. The “second-
order” model is found to improve on the earlier “variational” method by being in good
agreement with the finite element results.
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1 INTRODUCTION

The present work is concerned with the application of the “second-order” nonlinear
homogenization procedure of Ponte Castañeda [1], to generate estimates for the ef-
fective behavior of viscoplastic porous media. This method is a generalization of the
earlier variational method of Ponte Castañeda [2], which has been rigorously shown
to lead to uppers bounds for the stress potentials. The focus in this study is on porous
composites consisting of cylindrical voids with initially circular cross-section, that are
subjected to finite plane-strain deformations. As a consequence of the applied load,
the initially circular shape of the voids is expected to evolve into an elliptical one
with certain orientation. In this regard, we propose an approximate constitutive model
based on the “second-order” nonlinear homogenization method of Ponte Castañeda
[1] to estimate the effective behavior of viscoplastic porous materials consisting of
cylindrical voids with elliptical cross-section that are subjected to plane-strain loading
conditions.
In this context, we consider a representative volume element Ω of a two-phase porous
medium with each phase occupying a sub-domain Ω(r) (r = 1, 2). The vacuous
phase is identified as phase 2, while the non-vacuous phase (i.e., matrix phase) is
denoted as phase 1. The local behavior of the matrix phase is characterized by a
power-law, incompressible isotropic stress potential, such that the Cauchy stress σ
and the Eulerian strain-rate D at any point in Ω(1) are related by

D =
∂ U (1)

∂ σ
(σ), with U (1)(σ) =

σo

n + 1

(
σeq

σo

)n+1

. (1)

Here, the von Mises stress is defined in terms of the deviatoric stress tensor as σeq =



√
3
2 σ ′ · σ ′, σo denotes the flow stress of the matrix phase, and m = 1/n is the strain-

rate sensitivity parameter, which takes values between, 0 and 1. Note that the two
limiting values m = 1 and m = 0 correspond to linear and ideally-plastic behaviors,
respectively.
The effective behavior of the porous material is defined as the relation between the
average stress, σ = 〈σ〉, and the average strain-rate, D = 〈D〉, which can also be
characterized by an effective stress potential Ũ , such that [3]

D =
∂ Ũ

∂ σ
(σ), Ũ(σ) = (1− f) inf

σ εS(σ)
〈U (1)(σ)〉(1). (2)

Here, 〈·〉 and 〈·〉(1) denote volume averages over the representative volume element
Ω and over the matrix phase Ω(1), respectively, f denotes the volume fraction of
the porous phase (i.e., the porosity), and S (σ) = {σ, divσ = 0 in Ω, σn =
0 on ∂Ω(2), 〈σ〉 = σ} is the set of statically admissible stresses. It is noted that the
porous material is subjected to plane-strain loading conditions, so that Di3 = 0 with
i = 1, 2, 3.

1.1 The “Second-order” method

To estimate the effective stress potential Ũ for the porous medium, the “second-order”
method, originally proposed by Ponte Castañeda [1], is described next. The method is
based on the construction of a “linear comparison composite” (LCC), with the same
microstructure as the nonlinear composite, whose constituent phases are identified
with appropriate linearizations of the given nonlinear phases resulting from a suitably
designed variational principle. This allows the use of any method already available
to estimate the effective behavior of linear composites to generate corresponding es-
timates for nonlinear composites.
For the class of materials considered in this work, the LCC is a porous material, with
a matrix phase characterized by

UL (σ; σ̌, M) = U (σ̌) +
∂U

∂σ
(σ̌) · (σ − σ̌) +

1
2

(σ − σ̌) · M (σ − σ̌) , (3)

where the label ‘1’ (denoting the matrix phase) will be omitted for simplicity in the
rest of the section. In this expression, the tensor σ̌ is a uniform reference stress tensor,
which has been defined for the case of transversely isotropic porous media [4] in such
a way that it reproduces exactly the behavior of a “composite-cylinder assemblage”
in the limit of in-plane hydrostatic loadings, and therefore coincides with the hydro-
static limit of Gurson’s criterion in the special case of ideal plasticity. In turn, M is a
symmetric, fourth-order, compliance tensor of the form [5]

M =
1
2λ

E +
1
2µ

F, with E =
3
2

σ̌ ′ ⊗ σ̌ ′

σ̌2
eq

, F = K− E. (4)

In this last expression, K denotes the in-plane components of the standard, fourth-
order, isotropic, shear projection tensor, whereas the “prime” denotes the deviatoric
part of σ̌. Then, the “second-order” estimate for the effective stress potential of the
nonlinear porous material is given by [1]

ŨSOM (σ) = stat
λ, µ

{
ŨL (σ; σ̌, M) + (1− f) V (σ̌, M)

}
, (5)

where ŨL is the effective stress potential of the LCC, while the “corrector” function
V is defined as

V (σ̌, M) = stat
σ̂

[U (σ̂)− UL (σ̂; σ̌, M)] , (6)



where σ̂ is a uniform stress tensor. In these expressions, the stationary operation (stat)
consists in setting the partial derivative of the argument with respect to the variable
equal to zero, which yields a set of nonlinear equations for the variables λ, µ and σ̂,
as shown next.
Making use of the symmetry of the tensor M, we can define two components of the
tensor σ̂ that are parallel and perpendicular to the corresponding reference tensor σ̌,
respectively, σ̂|| = ( 3

2 σ̂ ·E σ̂)1/2 and σ̂⊥ = ( 3
2 σ̂ ·F σ̂)1/2, such that the equivalent part

of the tensor σ̂ reduces to σ̂eq =
√

σ̂2
|| + σ̂2

⊥. Taking into account the two stationarity
operations described previously in expressions (5) and (6), the effective stress potential
of the nonlinear porous composite can be further simplified to [5]

ŨSOM (σ) = (1− f)

[
σo

1 + n

(
σ̂eq

σo

)n+1

−
(

σ̌eq

σo

)n (
σ̂|| −

σeq

(1− f)

)]
, (7)

where the quantities σ̂eq and σ̂|| depend on certain traces of the field fluctuations in
the LCC. The corresponding macroscopic stress-strain-rate relation follows from dif-
ferentiation of (5) or, equivalently, (7) and explicit expressions are given in [6, 7].

1.2 Particulate microstructures and evolution
In the present work, the focus is on “particulate” porous materials containing cylin-
drical voids with initially circular cross-section aligned with the x3-axis, which are
randomly distributed in the transverse plane x1−x2. These materials are subjected to
finite plane-strain deformations and, as a consequence, the initially circular cylindri-
cal voids evolve into elliptical ones. For this reason, the present model makes of the
Willis estimates [8] to determine the effective behavior of the LCC, which in turn pro-
vide estimates for the nonlinear porous material. Then, the relevant internal variables
characterizing the state of the microstructure are:

1. the volume fraction of the voids or porosity f = Vvoids/Vtot, where V denotes
volume,

2. the aspect ratio w = a2/a1 where 2 ai with i = 1, 2 denote the lengths of the
in-plane principal axes of the ellipsoidal voids,

3. the angle ψ, which describes the orientation of of the in-plane principal axes of
the ellipsoidal voids relative to the fixed laboratory frame of reference.

In addition, the above-described microstructural variables are expected to evolve dur-
ing the deformation process. The corresponding evolution laws for these variables
were given by Ponte Castañeda and Zaidman [9] and Kailasam and Ponte Castañeda
[10] (see also [11]) in the context of the “variational” method [2]. These laws can be
easily generalized in the context of the “second-order” method, however, due to lack
of space these details will be performed elsewhere.

2 DISCUSSION AND RESULTS

In this section, we discuss the implementation of the “second-order” method (SOM )
in the case of porous media consisting of cylindrical voids with initially circular cross-
section, which are subjected to plane-strain loading conditions. The SOM estimates
are compared with unit cell finite element (FEM ) results and the earlier “variational”
(V AR) predictions.
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Figure 1: Evolution of the normalized porosity f/fo and the aspect ratio w for uniaxial tension
loading. SOM vs. FEM predictions.

2.1 Aligned loadings
For the calculations performed in this subsection, the initial porosity is considered to
be sufficiently small, i.e., fo = 0.01%, such that the comparison between the periodic
unit cell and the random porous medium, described in the previous section, is mean-
ingful. In turn, traction boundary conditions are applied, so that the only non-zero
in-plane, components of the macroscopic stress tensor are

σ11 6= 0, σ22 6= 0, σ12 = 0, XΣ =
σ11 + σ22√
3 |σ11 − σ22|

, (8)

where XΣ denotes the stress triaxiality. Provided that the major axis of the voids is
aligned with the laboratory frame of reference and the principal loading axes, the only
relevant microstructural variables are the porosity f and the in-plane aspect ratio w.
In turn, the orientation of the voids remains fixed.
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Figure 2: Evolution of the normalized porosity f/fo and the aspect ratio w for uniaxial com-
pression loading. SOM vs. FEM predictions.

Uniaxial tension loading. Fig. 1 presents results for the evolution of the normal-
ized porosity f/fo, and the aspect ratio w as a function of the nonlinear exponent
n = 1, 2, 4, 10 and the total axial strain ε22 for uniaxial tension (i.e., XΣ = 1/

√
3). In



Fig. 1a, the predictions of the SOM for the evolution of porosity are in good agree-
ment with the FEM results for all the nonlinearities considered. In turn, looking at
Fig. 1b, the corresponding aspect ratio grows substantially for large deformations. In
this case, both predictions are in good agreement up to a nonlinearity n = 4, whereas
for n = 10 the SOM overestimates the evolution of w when compared with the
FEM . Note that the V AR estimates do not depend on the nonlinearity and thus co-
incide with the n = 1 curve. In this regard, the SOM improves significantly on the
V AR method.
Uniaxial compression loading. Fig. 2 shows results for the relevant microstructural
and macroscopic variables as a function of the total macroscopic axial strain |ε22| and
nonlinearity n = 1, 2, 4 for uniaxial compression (i.e., XΣ = −1/

√
3). More specif-

ically, in Fig. 2a, the SOM predictions for the evolution of the normalized poros-
ity f/fo are in very good agreement with the corresponding results obtained by the
FEM . It is noted that it was not possible to have good numerical accuracy with the
FEM method for nonlinearities greater than n = 4. Looking now at Fig. 2b, the
SOM slightly overestimates the evolution of the aspect ratio w when compared with
the FEM . However, both methods predict a very sharp change in the aspect ratio,
which finally tends to zero as the porosity becomes zero. Similarly to the previous
case, the V AR estimates do not depend on the nonlinearity and thus coincide with the
n = 1 curve.
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Figure 3: Evolution of the angle ψ and the components of the stress tensor in simple-shear
loading. SOM .vs.FEM .vs.V AR estimates.

2.2 Simple shear loading
In this subsection, we study the evolution of the orientation of the void when simple
shear loading is applied. The material is subjected to total shear strain 2 ε12 = γ.
For comparison, FEM results are also included. Because of the applied load, the
porosity is not evolving. For numerical reasons related to the FEM calculations, the
initial porosity has been chosen to be f = 1%.
Fig. 3 presents results for the evolution of the orientation angle ψ and the macroscopic
components of the normalized stress tensor σ/σo (σo denotes the flow stress of the
matrix phase) as a function of the applied shear strain γ for various nonlinearities
n = 1, 2, 4. Fig. 3a shows the evolution of the orientation angle of a void with ini-
tially circular cross-section for a nonlinear exponent n = 4. As a consequence of the
applied load, the initial orientation of the major axis of the void lies at 45o. As the
deformation progresses, the orientation angle evolves reaching a value of ∼ 32o at
shear strain 100%. Both the SOM and the V AR estimates are in good agreement
with the FEM predictions. It should be also noted that the evolution of the orienta-
tion angle ψ depends very slightly on the nonlinearity. This is the reason that we do



not include graphs for other values of n. In turn, Fig. 3b, shows evolution curves for
the normalized macroscopic components of the stress tensor σ/σo, where the SOM
and the FEM are found to be in good agreement. In addition, the shear stress σ12
starts from a finite value, whereas the rest of the components are initially zero. In the
sequel, the two components σ11 and σ22 evolve similarly, except at sufficiently large
shear strain where they start deviate from each other. On the other hand, the shear
stress σ12 remains almost unaffected by the evolution process.

3 CONCLUDING REMARKS

It has been shown that the new model based on the “second-order” method [1] im-
proves significantly on the earlier “variational” [2] estimates by being in much better
agreement with the finite element results. Similarly to the “variational” method, the
new “second-order” model is able to provide estimates for general in-plane loadings,
such as the prediction of the orientation of the voids when the porous medium is sub-
jected to simple shear loading conditions.
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