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1 INTRODUCTION

This work is concerned with the application of
the ”second-order” nonlinear homogenization
procedure of Ponte Castañeda (2002 a,b), de-
noted as SOM , to generate estimates of the
Hashin-Shtrikman type for the effective be-
havior of two-phase, porous, power-law com-
posites. The SOM is applied to plane-strain
nonlinear porous composites weakened by alig-
ned cylindrical (ellipsoidal) voids randomly dis-
tributed so that the overall symmetry of the
composite is transversely isotropic. The mi-
crostructure (voids) is allowed to evolve in
such a manner that the initially isotropic re-
sponse of the composite becomes anisotropic.
This is due to the change in shape and orien-
tation of the voids in the plane 1 − 2. The
change in the shape of the void is identified
with the evolution of the aspect ratio of the
void, λ, while the change in the orientation
of the void is given by the change in the an-
gle, ψ, formed between the largest principal
axis of the void and the laboratory-frame axis
1, as indicated in figure(1). The microstruc-
ture evolution also includes the increase of the
concentration of the voids, namely the poros-
ity defined as f . Moreover, power-law behav-
ior will be assumed for the non-vacuous phase
(matrix) labelled as 1, which reads as

U (1)(σ) =
D0 σ0

n + 1

(
σeq

σ0

)n+1

, n =
1

m
(1)

where m is the strain-rate sensitivity, param-
eter such that 0 ≤ m ≤ 1, σ0 is the flow
stress of the non-vacuous phase, D0 is a refer-
ence strain-rate and σeq is the equivalent von-
Mises stress. It is important to mention here
that, although, the matrix phase, 1, is consid-
ered to be incompressible the overall behavior
of the composite turns out to be compress-
ible. In the above definition of the power-law

potential when n = 1 the effective response
of the material is linear, while for n > 1 the
behavior becomes nonlinear. When the limit
n → ∞ is considered the material becomes
rigid-perfectly plastic.

For comparison purposes the results de-
rived with the use of the SOM are plotted
together with results given by the variational
method (denoted as V AR) of Ponte Castañeda
(1991), the Gurson model (1977) (denoted as
GUR) for two-dimensional cylindrical voids in
a perfectly-plastic matrix, finite element cal-
culations (FEM) (ABAQUS, 2004) of a unit
cell with an isolated, initially, cylindrical void
embedded in a nonlinear matrix which sat-
isfies the relation (1). Moreover, estimates
delivered by the study of high-rank sequen-
tially laminated porous composites, denoted
as LAM , making use of the work of deBotton
and Hariton (2002), are used in estimating the
yield surfaces of isotropic porous media for all
nonlinearities. In the last method, the fields
in the phases are computed exactly, while the
fields in the porous phase are uniform since
they are constructed by a laminating proce-
dure. In both the SOM and the V AR case,
the fields in the inclusion phase (void) are also
assumed to be uniform (Hashin-Shtrikman es-
timates).

2 EFFECTIVE CONSTITUTIVE LAWS

The effective behavior of a composite mate-
rial is defined as the instantaneous relation
between the average stress, σ = 〈σ〉, and the
average strain-rate, D = 〈D〉, where the tri-
angular brackets serve to denote volume aver-
ages over the representative volume element
Ω. The overall response of the medium will
be a function of the internal variables char-
acterizing the microstructure, labelled at this
point as sα. For the above defined class of
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Figure 1: Image of the porous material with ini-
tially spherical voids. On the right lower corner
the representative ellipsoid is shown. The aspect
ratio is defined as shown.

materials, it is known from Hill (1963), that
the effective constitutive behavior reads as,

D =
∂ Ũ

∂ σ
(σ; sα),

Ũ(σ; sα) = inf
σ ε=(σ)

〈U(x,σ)〉 (2)

where = (σ) = {σ, divσ = 0 in Ω, 〈σ〉 = σ}
is the set of statically admissible stresses that
are consistent with the average stress condi-
tion 〈σ 〉 = σ, and Ũ(σ; sα) is the effective
stress potential of the composite. The second-
order method delivers estimates for the effec-
tive potential of a general N -phase composite,
which takes the general form:

Ũ(σ) = stat
M(s)

0

{ ŨT (σ;M
(s)
0 )−

N∑

r=1

c(r) V (r)(M
(r)
0 ) }, (3)

where the ŨT is the effective potential of a
linear comparison composite (LCC) with the
same microstructure as the nonlinear one and
V (r) are the error functions defined in Ponte
Castañeda (2002 a,b). The stationary opera-
tion in relation (3) consists in setting the par-
tial derivative of the argument with respect to

the fourth-order tensors M
(s)
0 equal to zero.

3 APPLICATIONS

In this section, the SOM is applied initially
in isotropic porous, power-law composites in

order to deliver estimates for the yield sur-
faces of the effective medium. Comparisons
are made with the available methods men-
tioned in the introduction. Then, the SOM
is used to deliver estimates on the evolution
of porosity under uniaxial tension loading for
different values of the nonlinearity parameter
n.
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Figure 2: Yield surfaces of isotropic porous com-
posite for initial porosity of f0 = 10%.

In figure (2) yield surfaces for n →∞ are
shown. The SOM is in remarkable agreement
with the estimate delivered by the LAM . In
addition, both the SOM and the LAM ex-
hibit a corner on the hydrostatic axis, which
is a very crucial effect when the normal to
that surface needs to be computed. Similar
shape of yield functions were also observed
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Figure 3: Evolution of porosity under uniaxial
tension loading for various nonlinearities. Initial
porosity of f0 = 0.01% and initial aspect ratio
λ = 1.

by Pastor and Ponte Castañeda (2002). It
is also important to mention that except for
the V AR method all the rest recover the an-
alytical point in the pure hydrostatic limit
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(σeq → 0). However, despite the fact that
the GUR estimate is exact in that limit, it
does not capture the effect of the corner which
is very important when the evolution of mi-
crostructure takes place. The GUR estimate
also violates the variational bound, V AR, at
low triaxialities.

Finally, the evolution of porosity for vari-
ous nonlinearities, when the specimen is sub-
jected to uniaxial tension loading, is shown
in figure (3). It is evident that the SOM is
in remarkable agreement with the FEM esti-
mates for the evolving porosity, while it im-
proves on the earlier estimates delivered by
the V AR method which seriously underesti-
mate the porosity evolution when the com-
posite is highly nonlinear. In fact, the V AR
method predicts the same behavior for all non-
linearities when it is plotted with respect to
the applied strain.
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