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A B S T R A C T

In this work, we propose a new fully explicit isotropic, rate-independent, elasto-plastic model for porous
materials comprising a random with uniform probability, isotropic distribution of randomly oriented spheroidal
voids of the same shape. The proposed model is based on earlier homogenization estimates that use a linear
comparison composite theory. The resulting expressions exhibit the simplicity of the well known Gurson model
and, thus, its numerical implementation in a finite element code is straightforward. To assess the accuracy of
the analytical model, we carry out detailed finite-strain, three-dimensional finite element (FE) simulations
of representative volume elements (RVEs) with the corresponding microstructures. Proper minimal parameter
calibration of the model leads to fairly accurate agreement of the analytical predictions with the corresponding
FE average stresses and porosity evolution. We show, both analytically and numerically, that the initial aspect
ratio of the voids has a significant effect on the homogenized yield surface of the porous material leading to
extremely soft responses for flat oblate voids (e.g. aspect ratio less than 0.5) especially at large triaxialities.
Finally, after numerical implementation of the model in a commercial finite element code (ABAQUS), we
solve the industrially important problem of hole expansion and comment on the role of porous compressible
plasticity versus classical incompressible plasticity.
1. Introduction

The problem of ductile fracture of metallic materials is closely
related to the distribution and evolution of voids in the underlying
microstructure. The presence of these voids can be attributed either
to manufacturing induced defects, interface decohesion between the
matrix and dispersed secondary particles or particle breakage during
deformation. The mechanisms driving the process may vary signifi-
cantly depending on the loading conditions and the local stress states
developed (Noell et al., 2018), however the most prominent ones
involve the growth, nucleation and coalescence of voids (Pardoen and
Hutchinson, 2000; Benzerga and Leblond, 2010; Benzerga et al., 2016).

Perhaps, the most well-known constitutive model for the description
of the macroscopic behavior of porous ductile materials is that of
Gurson (Gurson, 1977), which was derived using a combination of limit
analysis and homogenization by considering a spherical void embedded
into a rigid-plastic von Mises matrix while assuming that the void may
change its size but not its shape during plastic deformation. Despite
the model’s inability to yield accurate predictions for shear dominated
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stress states due to its restrictive assumptions, the simplicity of the
model’s formulation and the versatility regarding its computational
implementation have made it very attractive and several extensions
have been proposed over the years. Phenomenological modifications
to account for void nucleation and criteria for void coalescence were
proposed soon after (Chu and Needleman, 1980; Tvergaard and Needle-
man, 1984), while modifications to include dependence on the third
invariant 𝐽3 of the stress deviator in order to account for shear failure
effects were later proposed by several authors (Nahshon and Hutchin-
son, 2008; Zhou et al., 2014; Dæhli et al., 2018; He et al., 2021;
Rousselier, 2022; Khan et al., 2023). Concerning the latter, such depen-
dencies on physical grounds stem from the fact that in real materials,
voids are not spherical but they may rather have irregular shapes, and
this void shape effect can play a detrimental role in the predictions
of ductile fracture. For example, finite element calculations conducted
by Tvergaard (2009), Nielsen and Tvergaard (2011), and Nielsen et al.
(2012) indicate that void shape changes or void rotations can reduce
the load-carrying capacity of the material in shear-dominated loadings
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without increase in porosity due the interaction of flattened, crack-like
neighboring voids (Anderson et al. (1990)).

In this regard, various models have been proposed in the literature
that assume more general void shapes and/or void rotation. Among
others, notable references are the models proposed by Leblond and
co-workers (Gologanu et al., 1993, 1994, 1997) for spheroidal voids
and Madou and Leblond (Madou and Leblond, 2012a,b) for general
ellipsoidal voids. These models, which were also derived through a
limit analysis approach on appropriately selected representative cells
by using kinematically admissible velocity fields, serve as extensions
to the Gurson model that incorporate void shape effects. However,
even though these models take into account more general void shapes
and their evolution, they do not assess void rotation in a seamless
manner. Another more rigorous class of homogenization models for
porous materials was proposed by Kailasam et al. (1997), Kailasam
and Ponte Castañeda (1998) in the general context of viscoplasticity.
These were developed based on the variational principles initially
presented in the works of Ponte Castañeda (1991) and Willis (1991)
on homogenization of nonlinear composites providing an upper bound
for the effective yield function of the porous material using a linear
comparison composite (LCC) methodology. Even though in these mod-
els void rotation due to plastic deformation is accounted for, bounds
derived with this methodology were found to be very stiff in the case
of materials with an isotropic matrix and spherical voids subjected to
large hydrostatic loadings (Michel and Suquet, 1992). Modifications
to existing models (e.g. Danas and Aravas (2012)) and improved (but
more complex) models derived using similar principles (Danas et al.,
2008b; Danas and Ponte Castañeda, 2009a,b; Agoras and Ponte Cas-
tañeda, 2013) were later proposed in an effort to amend these issues.
Moreover, expressions from those homogenization models were directly
borrowed in the limit analysis based models mentioned previously to
include void orientation changes (Madou et al., 2013; Morin et al.,
2017).

The aforementioned models share some common characteristics: (i)
they assume a first order effect on void shape and/or void orientation
evolution (put in other words: on anisotropy induced due to void
shape changes) on the related mechanisms that lead to ductile fracture
and (ii) they consider microstructures comprising uniform or via com-
posite sphere/ellipsoidal assemblage type distributions of ellipsoidal
voids that all have the same orientation (unidirectional microstructures).
More often than not, the initial microstructure is assumed to comprise
spherical voids to start off with an initially isotropic response. Nev-
ertheless, metallic materials usually contain an initial distribution of
non-spherical, irregularly shaped pores (Wang et al., 2021; Limodin
et al., 2023). Those pores have rather flat shapes that can be even
considered cracks and are randomly oriented in space (Meynard et al.,
2022). Yet, the response of these materials remains fairly isotropic
in the early stages of deformation implying that those shapes are
distributed with a rather random orientation.

In this view, earlier numerical and theoretical homogenization stud-
ies in elasticity (Gatt et al., 2005; Anoukou et al., 2018; Zerhouni et al.,
2021) as well as limit analysis approaches for rigid-perfectly plastic
materials (Vincent and Monerie, 2008; Shen et al., 2011) suggest that,
the macroscopic properties of porous materials can be quite different,
at the same porosity levels, for microstructures that consist of randomly
orientated voids with different initial shapes. Such observations imply
that initial void shape alone could potentially have important effects
on the effective behavior and porosity evolution of the porous material
and consequently on its overall ductility. A more realistic modeling
approach would need to consider voids which are not necessarily all
aligned in the same direction but are randomly oriented in the matrix.
One way to investigate this effect would be a potential extension of the
model proposed in Kailasam et al. (1997), Danas and Ponte Castañeda
(2009a) or Danas and Aravas (2012) for the inclusion of multiple (but
finite) void families with the same shape but different orientations;
2

in that case the general theory presented by Kailasam (Kailasam and q
Ponte Castañeda, 1998) in the context of nonlinear homogenization
for multiple-phase composites with ‘‘particulate’’ microstructures could
be used. Application of such an approach is computationally ineffi-
cient in practice, since it would lead to a considerable increase of
the underlying microstructural variables (porosity, void shape, and
orientation evolution) that would need to be kept track of. The aim of
this work is to showcase a computationally feasible way of addressing
such randomly oriented void distributions accepting a certain level of
calibration in the final model.

1.1. Scope of the study

In the present study, we propose a new rate-independent, elastic–
plastic model for porous metals with initially random void shape orien-
tations distributed randomly and isotropically in space. The model can
be used to describe the effective response of metallic materials with
a von Mises matrix; possible extensions to include dependence on the
third invariant 𝐽3 of the deviatoric stress can be easily incorporated
in a heuristic manner for example along the lines described in Benz-
erga and Leblond (2010). The model takes an explicit form similar to
that of Gurson, but it incorporates spheroidal voids, albeit randomly
oriented, seamlessly through homogenization. This is achieved by the
equivalence between projection into the space of isotropic fourth-
order tensors and integral orientation averaging (Gatt et al. (2005),
Moakher and Norris (2006)), leading to an overall isotropic elastic–
plastic behavior. To keep the model simple with a minimum set of
microstructural variables, all families of voids are assumed to have the
same shape described by a single aspect ratio, which does not evolve
with deformation but rather remains constant and acts as a parameter
for the model. The idea for assuming a distribution of spheroids instead
of general ellipsoids is twofold.

Firstly, the spheroidal voids cover the interesting special case of
flat random oblate voids (spheroids with aspect ratio 𝑤 → 0), which
n the limit of vanishing porosity correspond to random cracks (Willis
1977), Monchiet (2006)), and can have a detrimental impact on the
oad-carrying capacity of the material. This special case can be analyzed
y using our results along with a procedure similar to the one presented
n the works of Willis (Willis, 1977, 1980, 1981) who considered the
forementioned limits in order to derive estimates for the effective
roperties in the context of various physical problems.

Secondly, in the calculation of the so-called ‘‘microstructural’’ ten-
ors for general ellipsoids that appear in the constitutive equations (see
or example Aravas and Ponte Castañeda (2004)), elliptic integrals of
he first and second kind need to be evaluated numerically, whereas,
n the case of spheroidal voids, explicit analytical expressions can
e obtained. This allows for a straightforward implementation of the
odel in finite element codes by using a methodology similar to that

f the original Gurson model. As a result, the model can be efficiently
sed both for the investigation of void shape effects on the macroscopic
ehavior of the porous material and for the simulation of ductile
racture related problems in structural components.

The paper is organized as follows. Section 2 describes the proposed
icrostructure as well as the assumptions adopted in order to derive
fully explicit model. In Section 3, the theoretical framework of

he proposed model is established. A decoupled procedure is used,
n which elasticity and plasticity are treated separately and then put
ogether to yield the elastic–plastic constitutive model. Instantaneous
ield curves predicted by the analytical model for different microstruc-
ural configurations are presented in Section 4, and the effects of
he void shape are investigated. In Section 5, finite element results
rom numerical homogenization calculations and model calibration
re presented. In Section 6, the calibrated model is used to examine
he predicted microstructural evolution in simple loading cases. The
odel is also implemented in a User MATerial (UMAT) subroutine in
BAQUS/Standard and a 3-dimensional numerical simulation of the

uasi-static hole expansion test is performed.
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Fig. 1. Illustration of porous microstructures consisting of 𝑁𝑓𝑎𝑚 randomly oriented and randomly distributed spheroidal voids (shown in red). The aspect ratio is 𝑤 = 0.3 in the
oblate and 𝑤 = 5 in the prolate voids.
Standard notation is used throughout. Boldface symbols denote
tensors the orders of which are indicated by the context. All tensor
components are written with respect to a fixed Cartesian coordinate
system with base vectors 𝐞𝑖 (𝑖 = 1, 2, 3), and the summation convention
is used for repeated Latin indices, unless otherwise indicated. Let 𝐚, 𝐛
be vectors, 𝐀, 𝐁 second-order tensors, ,  fourth-order tensors and
E, F eighth-order tensors. The following products are used in the text:
(𝐚 𝐛)𝑖𝑗 = 𝑎𝑖 𝑏𝑗 , 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗 𝐵𝑖𝑗 , (𝐀 ⋅ 𝐁)𝑖𝑗 = 𝐴𝑖𝑘 𝐵𝑘𝑗 , (𝐀𝐁)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗 𝐵𝑘𝑙,
( ∶ 𝐀)𝑖𝑗 = 𝑖𝑗𝑘𝑙 𝐴𝑘𝑙, (𝐀 ∶ )𝑖𝑗 = 𝐴𝑘𝑙 𝑘𝑙𝑖𝑗 , ( ∶ )𝑖𝑗𝑘𝑙 = 𝑖𝑗𝑝𝑞 𝑝𝑞𝑘𝑙,  ∶∶
 = 𝑖𝑗𝑘𝑙 𝑖𝑗𝑘𝑙, ()𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠 = 𝑖𝑗𝑘𝑙 𝑝𝑞𝑟𝑠 (E ∶∶ )𝑖𝑗𝑘𝑙 = E𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠 𝑝𝑞𝑟𝑠,
( ∶∶ E)𝑖𝑗𝑘𝑙 = 𝑝𝑞𝑟𝑠 E𝑝𝑞𝑟𝑠𝑖𝑗𝑘𝑙, and (E ∶∶ F)𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠 = E𝑖𝑗𝑘𝑙𝑚𝑛𝑦𝑧 E𝑚𝑛𝑦𝑧𝑝𝑞𝑟𝑠. The
inverse −1 of a fourth-order tensor  that has the ‘‘minor’’ symmetries
𝑖𝑗𝑘𝑙 = 𝑗𝑖𝑘𝑙 = 𝑖𝑗𝑙𝑘 is defined so that  ∶ −1 = −1 ∶  = , where  is
the symmetric fourth-order identity tensor with Cartesian components
𝑖𝑗𝑘𝑙 = (𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘)∕2, 𝛿𝑖𝑗 being the Kronecker delta.

2. Microstructure description

We consider porous metals with random microstructures that con-
tain 𝑁𝚏𝚊𝚖 families of randomly distributed ellipsoidal voids of different
shapes and orientations embedded in an isotropic elasto-plastic matrix
(to be defined explicitly later). We follow the definitions introduced
in Anoukou et al. (2018): each family contains voids with the same
aspect ratios and orientation but possibly different sizes, e.g., polydis-
perse microstructures (Lopez-Pamies et al., 2013). The features of the
vacuous phase can be described by the following set of microstructural
variables (see Fig. 1):

• The void volume fraction or porosity 𝑓 = 𝑣∕ , where 𝑣 denotes
the volume occupied by the voids and  the total volume of the
specimen. The volume fraction of the matrix is 1 − 𝑓 .

• Two aspect ratios that characterize the shape of the ellipsoidal
voids for each void family: 𝑤𝙸

1 = 𝑎3∕𝑎1 and 𝑤𝙸
2 = 𝑎3∕𝑎2 with

𝙸 = 1,… , 𝑁𝚏𝚊𝚖.
• A set of three mutually orthogonal unit vectors that define the

orientation of the principal axes in the ellipsoidal voids of each
void family: {𝐧(1)

𝙸
,𝐧(2)

𝙸
,𝐧(3)

𝙸
} with 𝙸 = 1,… , 𝑁𝚏𝚊𝚖.

It has been shown recently that such microstructures may be directly
realized by the use of 3D-printers (Zerhouni et al., 2019; Tarantino
et al., 2019; Hooshmand-Ahoor et al., 2022).

We consider the geometries described above as idealized microstruc-
tures for low-porosity metallic materials. Actual metallic materials do
not have such regular quadric pore shapes (Limodin et al., 2023); nev-
ertheless, over the last fifty years, such idealized geometries have been
used extensively to adequately account for the main effects of porosity
on ductile fracture (Gurson, 1977; Tvergaard and Needleman, 1984;
3

Kailasam and Ponte Castañeda, 1998; Danas and Ponte Castañeda,
2009a; Madou and Leblond, 2012a; Danas and Aravas, 2012; Morin
et al., 2016). These involve the first order porosity effect as well as the
local average pore-induced morphological anisotropy due to random
grain distributions and precipitates. An ellipsoidal void should be
regarded as a locally orthotropic soft heterogeneity, which describes the
average response over a neighborhood of voided regions. Any attempt
to connect the actual local microstructure of a real material with such
idealized void shape distributions is irrelevant. A local pore description
requires a practically unattainable meshing effort and extremely heavy
numerical simulations that would not even allow for large strains at
the macroscopic scale. In turn, the idealized average ellipsoidal voids
allow for the development of simple models that can be calibrated
and used to address boundary value problems at the scale of structural
components (Danas and Aravas, 2012; Morin et al., 2017).

A priori, the linear comparison composite (LCC) homogenization
models proposed by Ponte Castañeda (1991) and co-workers may deal
with such ideal microstructures and any number 𝑁𝚏𝚊𝚖 of families (see
for instance (Papadioti et al., 2016)), owing mainly to the correspond-
ing linear composite estimates they depend on Willis (1981).

Using the same viewpoint, we simplify further the microstructure
descriptors in an attempt to propose a fully analytical and explicit,
isotropic model. The simplifications introduced are as follows.

• All void families have the same shape, i.e., 𝑤𝙸
1 = 𝑤1 and 𝑤𝙸

2 = 𝑤2
(for all 𝙸 = 1,… , 𝑁𝚏𝚊𝚖), but not the same orientation.

• All voids are assumed spheroidal, i.e., 𝑤1 = 𝑤2 = 𝑤, so that the
semi-axes become 𝑎1 = 𝑎2 = 𝑎. The cases of 𝑤 = 1, 𝑤 > 1, and
𝑤 < 1 correspond to spherical, prolate, and oblate spheroidal
voids respectively. This additional specification allows for the
development of a fully explicit model of the Gurson type, since
the Eshelby–Hill tensors (Eshelby (1957), Hill (1963)) involved in
the homogenization estimates can now be determined analytically
as described in Appendix A and, in more detail, in Willis (1981).
Note that the special cases 𝑤1 = 𝑎3∕𝑎1 = 1 and 𝑤2 ≠ 1 (or 𝑤1 ≠ 1
and 𝑤2 = 𝑎3∕𝑎2 = 1) also correspond to spheroidal voids rotated
by 90◦ about 𝐞1 (or 𝐞2) and therefore included by default in the
formulation.

• We consider a spatially uniform (isotropic) random distribution of
orientations of the spheroidal voids leading to an overall isotropic
elasto-plastic response of the porous material. In the analytical
treatment of the model presented in Section 3, an infinite number
of orientations is considered and an integral orientation average
is calculated (see Appendix B). In the numerical microstructure
generation of a representative volume element, a finite number
𝑁𝚏𝚊𝚖 of families with random orientations is used (see Anoukou
et al. (2018)). The number of voids deemed sufficient for a fairly
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isotropic average RVE response is decided by simulating RVEs
with progressively more voids until the response does not change
in the three principal directions beyond a small percentage. This
important point is discussed in more detail in Section 5.1.2.

A representation of such random porous (or more generally particu-
ate) microstructures with oblate (i.e., 𝑤 = 0.3) and prolate (i.e., 𝑤 = 5)

voids is shown in Fig. 1.

Remark 1. It should be noted at this point that, for the sake of deriving
a fully explicit and computationally efficient analytical homogenization
model, only microstructures with statistically uniform distribution of
voids will be considered. Clustering effects at microstructural level,
such as the ones discussed in the work of Bilger et al. (2007) and more
recently (Holte et al., 2023), will not be taken into account. However,
the present model can account for such effects at a macroscopic level
in an average sense since non-uniform initial porosity distributions can
be readily implemented in codes used for structural calculations (see
for instance (Srivastava et al., 2014)).

3. The isotropic projection model

In the following, we describe the main ingredients of the pro-
posed analytical model. An additive decomposition of the total rate-
of-deformation tensor 𝐃 into an elastic and a plastic part is used:

𝐃 = 𝐃𝑒 + 𝐃𝑝 (3.1)

The constitutive equations for the elastic and plastic behavior are
treated in a decoupled manner (e.g., Cheng et al. (2017)) and are later
combined in order to yield the total effective elastic–plastic response of
the porous material.

3.1. Elasticity

The homogenized elastic behavior of the porous material is described
by a hypoelastic constitutive equation of the form

𝐃𝑒 =  ∶
∇
𝝈,  = 1

2𝜇
 + 1

3 𝜅
 ,  = 1

3
𝜹 𝜹,  =  −  ,

(3.2)

here,
∇
𝝈 is the co-rotational Jaumann derivative of the Cauchy stress

,  is the symmetric fourth-order identity tensor defined in the Intro-
uction, (, ) are the deviatoric and hydrostatic fourth-order identity
ensors and 𝜹 is the second-order identity tensor (Kronecker delta). In
urn,  is the fourth-order isotropic incremental elastic compliance
ensor, and (𝜅, 𝜇) are the effective incremental elastic bulk and shear
oduli of the porous material with an infinite number of randomly

riented pore families (𝑁𝚏𝚊𝚖 → ∞), which all have the same aspect
atio 𝑤, as discussed in the previous section.

Specifically, the incremental elastic moduli (𝜅, 𝜇) (and thus )
re calculated using the methodology of Gatt et al. (2005) (see also
noukou et al. (2018)), who proposed the use of an ‘‘isotropic pro-

ection’’ of the well-known anisotropic (Hashin and Shtrikman, 1963)
stimates, and take the final compact and explicit form

1
3 𝜅

= 1
3
𝚠

𝑖𝑖𝑗𝑗 and 1
2𝜇

= 1
5

(

𝚠
𝑖𝑗𝑖𝑗 −

1
3 𝜅

)

. (3.3)

In this expression, 𝚠 is the effective compliance tensor corresponding
to a single family of unidirectional ellipsoidal voids (Aravas and Ponte
Castañeda, 2004; Danas, 2008)1

𝚠(𝜇𝚖, 𝜅𝚖, 𝜈𝚖, 𝑓 , 𝑤, 𝐧(𝑖)) = 𝚖(𝜇𝚖, 𝜅𝚖) +
𝑓

(1 − 𝑓 )𝜇𝚖
−1(𝜈𝚖, 𝑤,𝐧(𝑖)), (3.4)

1 A general expression for the effective compliance tensor of a composite
ontaining 𝑁 different type of inclusions is given by Willis (see Willis (1982),

p. 671).
4

m

where

𝚖 = 1
2𝜇𝚖

 + 1
3 𝜅𝚖

 ,

(𝜇𝚖, 𝜅𝚖) are the shear modulus and bulk modulus of the matrix and
𝚖 = (3 𝜅𝚖 − 2𝜇𝚖)∕(6 𝜅𝚖 + 2𝜇𝚖) the matrix Poisson’s ratio. Also,  is
fourth-order ‘‘microstructural’’ tensor related directly to the well-

nown Eshelby–Hill tensor (Eshelby, 1957; Hill, 1963) and has both
he major (𝑖𝑗𝑘𝑙 = 𝑘𝑙𝑖𝑗 ) and minor symmetries (𝑖𝑗𝑘𝑙 = 𝑗𝑖𝑘𝑙 = 𝑖𝑗𝑙𝑘 =
𝑗𝑖𝑙𝑘). Methodologies for the calculation of the components of  tensor

or general ellipsoids can be found in various works (e.g., see Appendix
in Aravas and Ponte Castañeda (2004)2). In the case of spheroidal

oids, which is the focus of the present work, these expressions simplify
onsiderably becoming analytical and explicit and are presented in
ppendix A.

In order to obtain the final expression (3.3), we define, next, the
ighth-order ‘‘isotropic projection tensor’’ Proj{, } (Gatt et al., 2005)

roj{, } ≡
1

 ∶∶ 
 + 1

 ∶∶ 
  = 1

5
 +   , (3.5)

nd identify  with the isotropic projection Proj{, } ∶∶ 𝚠 of 𝚠,
.e.,

= Proj{, } ∶∶ 𝚠 = 𝚠 ∶∶ Proj{, } ≡
1
2𝜇

 + 1
3 𝜅

 , (3.6)

eading to (𝜅, 𝜇) defined in (3.3). This final result is obtained by direct
algebraic manipulations and the use of the following identities

 ∶∶  = 5,  ∶∶  = 1,  ∶∶  =  ∶∶  = 0,

 ∶∶  = 6,  ∶∶  =  ∶∶  = 5,  ∶∶  =  ∶∶  = 1.

hich imply also that

roj{, } ∶∶ Proj{, } = Proj{, }, (3.7)

roj{, } ∶∶
(

Proj{, } ∶∶ 
)

= Proj{, } ∶∶ , (3.8)

or all fourth-order tensors  that possess major and minor symmetries.
n addition, the last two relations are satisfied by all ‘‘projection op-
rators’’ (e.g., see Meyer (2000), p. 386) and state the fact that the
rojection of a projection equals the original projection.3

emark 2. In Appendix B, we show that the isotropic projection of
fourth-order tensor  that possesses the ‘‘minor’’ symmetries 𝑖𝑗𝑘𝑙 =
𝑗𝑖𝑘𝑙 = 𝑖𝑗𝑙𝑘 = 𝑗𝑖𝑙𝑘 is equivalent to orientational averaging over all
irections of . Therefore, the resulting effective elastic shear and
ulk moduli (𝜅, 𝜇) of the isotropic porous material resulting from the
sotropic projection (3.6) of 𝚠 are independent of the orientation
ectors 𝐧(𝑖) and depend only on the elastic properties of the matrix (𝜇𝚖,
𝚖), on porosity 𝑓 , and on the void aspect ratio 𝑤, as expected.

Fig. 2 shows the variation of the effective elastic moduli (𝜇, 𝜅),
etermined from (3.3), with the aspect ratio 𝑤 of the spheroidal voids
nd the bulk modulus 𝜅𝚖 of the matrix. All moduli in Fig. 2 are
ormalized with the shear modulus 𝜇𝚖 of the matrix material; the
orizontal axes are in a logarithmic scale.

Fig. 2a shows the effect of the aspect ratio 𝑤 on the normalized
ffective shear 𝜇∕𝜇𝚖 and bulk 𝜅∕𝜇𝚖 moduli of the porous material for a
atrix with a ratio of bulk to shear modulus 𝜅𝚖∕𝜇𝚖 = 2.17 (correspond-

ng to a Poisson’s ratio of 𝜈𝚖 = 0.3). There is a significant drop in both
he effective shear and bulk moduli for values of 𝑤 < 0.1 (i.e., for penny
haped voids), whereas the stiffest response corresponds to spherical
oids (𝑤 = 1). In the limit 𝑤 → 0 for fixed porosity, both the effective
hear and bulk moduli (𝜇, 𝜅) become asymptotically zero. This may be

2 Aravas and Ponte Castañeda (2004) use the notation 𝐐 = 𝜇𝑚 or 𝜇𝑚𝐐−1 =
−1.
3 All projection operators are ‘‘idempotent’’, i.e., they can be applied
ultiple times without changing the result beyond the initial application.
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Fig. 2. Variation of the effective elastic shear and bulk moduli (𝜇, 𝜅) with (a) the aspect ratio 𝑤 of the spheroidal voids for 𝜈𝚖 = 0.3 and for porosities 1%, 3% and 5%, and (b)
he bulk modulus 𝜅𝚖 of the matrix material for a porosity of 3% and for aspect ratios 𝑤 = 0.01, 0.10, and 0.50. All moduli are normalized with the shear modulus 𝜇𝚖 of the matrix
aterial, and a logarithmic scale is used on the horizontal axes. Note the different scales used on the vertical axes in Fig. 2b.
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nterpreted by observing that, in the limiting case of 𝑤 → 0 with finite
orosity, the porous material reaches a laminated type microstructure
with random orientations) and a plane of voided material may span
he entire volume leading to zero resistance to deformation. These
esults are in agreement with the earlier numerical and theoretical
omogenization studies of Gatt et al. (2005) and Anoukou et al. (2018).

The effect of the matrix bulk modulus 𝜅𝚖 on the effective elastic
roperties is shown in Fig. 2b for three different oblate void shapes at
fixed porosity value 𝑓 = 3%. Both the effective shear and bulk moduli
𝜇, 𝜅) increase with increasing 𝜅𝚖. However, the effective bulk modulus
is much more sensitive to 𝜅𝚖 compared to the effective bulk modulus
(note the different scales used on the vertical axes in Fig. 2b). For a

ixed value of porosity (𝑓 = 3% in Fig. 2b), when 𝜅𝚖 takes large values,
.e., as the matrix approaches the incompressible limit, the effective
ulk modulus 𝜅 defined in (3.3) reaches a finite value, which is an
ncreasing function of 𝑤. In other words, as the aspect ratio 𝑤 of the
oids increases, the compressibility of the composite decreases.

The limiting case in which both 𝑤 → 0 and 𝑓 → 0 corresponds to
compressible cracked material and can be treated by using similar
ethods as the ones presented in the works of Willis (Willis, 1977,
980, 1981); the details of such calculation will be addressed in a future
ublication.
5

(

Qualitatively similar results to those of Fig. 2b were found to hold
or prolate voids (i.e., for 𝑤 > 1), the only difference being that the
ffects of 𝜅𝚖 on the effective elastic moduli (𝜇, 𝜅) remained the same
ith increasing 𝑤 and are not presented here for brevity.

Finally, it is noted that this work deals with monotonic loads
nd thus porosity evolution during elastic loads is ignored since it is
egligible. Nevertheless, possible extension of this model in the case
f cyclic loads requires to consider porosity evolution in the elasticity
egime. This may be added in the present model in a straightforward
anner following the work of Cheng et al. (2017).

.2. Plasticity and evolution of microstructure

In this section, we extend the previous ideas of void orientational
veraging in the context of plasticity. In previous works, a form of ori-
ntational averaging was used by Vincent and Monerie (2008) and Shen
t al. (2011) to derive the yield criterion. These models are based on
limit analysis approach and were found to be fairly accurate when

ompared to numerical yield surface estimates, but have not been as
et used to predict porosity evolution to the knowledge of the authors.

The present study is based on the linear comparison composite
LCC) method (Ponte Castañeda, 1991) and orientational averaging



European Journal of Mechanics / A Solids 105 (2024) 105238S. Xenos et al.

𝝈

𝑞

t

m
a
m
a
r
a
a
a
t
r
i
e
r

R
t

𝛷

w

is used on the homogenized effective compliance tensor of the LCC.
Calculation of porosity evolution is then a straightforward operation.

3.2.1. Yield function
For the determination of the yield function, the concept of isotropic

projection, which was used in the description of the elastic consti-
tutive equations, is now employed in a similar manner by making
use of existing estimates for the rate-independent plastic behavior
of porous materials from the literature (see for instance Danas and
Aravas (2012)). More specifically, in this work, we propose a Gurson-
type yield function, which however is obtained by use of the LCC
homogenization method and in particular of the estimates for porous
materials originally proposed in Kailasam et al. (1997). The Hashin–
Shtrikman character of these estimates imply that interaction between
the randomly oriented voids is accounted for in the sense of one- and
two-point correlation functions. In this regard, it was shown in earlier
studies that such estimates are sufficiently accurate for porosities up to
15 − 20% (see for instance (Lopez-Pamies et al., 2013; Papadioti et al.,
2016; Anoukou et al., 2018; Luo et al., 2023)), which is more than
sufficient for the purposes of the present study.

More precisely, by projecting in the isotropic space the fourth-order
tensor m (see for notation Danas and Aravas (2012) and Cao et al.
(2015)) and using the interpolation scheme for the hydrostatic parts
proposed in Mbiakop et al. (2015b) (in equation (64) of that reference),
we readily obtain the explicit, isotropic yield function (see detailed
derivation in Appendix C)

𝛷(𝜎𝑒, 𝑝, �̄�𝑝, 𝑓 , 𝑤) =
1

3𝑚(𝑓,𝑤)

(

𝜎𝑒
𝜎𝑦

)2
+

+ 4
9𝑚 (𝑓,𝑤)

[

(1 − 𝛼(𝑓,𝑤)) 𝑞2 (𝑓 )
(

3 𝑝
2 𝜎𝑦

)2

+ 2 𝛼(𝑓,𝑤)
(

cosh
3 𝑝
2 𝜎𝑦

− 1
)]

−

− (1 − 𝑓 ). (3.9)

In this expression, 𝑝 is the hydrostatic stress (positive in tension),
𝑑 = 𝝈 − 𝑝 𝜹 is the stress deviator, 𝜎𝑒 =

√

3𝝈𝑑 ∶ 𝝈𝑑∕2 is the von Mises
equivalent stress and 𝜎𝑦 is the yield stress of the matrix, which can in
general be a function of the accumulated plastic strain �̄�𝑝 of the matrix
phase (i.e., 𝜎𝑦 = 𝜎𝑦(�̄�𝑝)). Moreover, we have that

1
3𝑚 (𝑓,𝑤)

= 1
3
𝑚𝚠
𝑖𝑖𝑗𝑗 ,

1
2𝑚(𝑓,𝑤)

= 1
5

(

𝑚𝚠
𝑖𝑗𝑖𝑗 −

1
3𝑚

)

,

 (𝑓 ) =
1 − 𝑓

√

𝑓 ln 1
𝑓

. (3.10)

Here, the effective homogenized coefficients (𝑚, 𝑚 ) result from the
isotropic projection of the microstructural fourth-order tensor (similar
to the elastic case discussed in the previous section)

m𝚠(𝑓,𝑤) = 3
2
 +

3𝑓
1 − 𝑓

−1(1∕2, 𝑤), (3.11)

with  evaluated in the limit of 𝜈𝚖 = 1∕2 and given in explicit form in
Appendix A. In turn, the correction factor 𝑞 in (3.10) is determined
so that the exact results of the ‘‘Composite Sphere and Cylinder As-
semblages’’ (CSA & CCA) of Hashin and of the Gurson (1977) model
can be recovered for the special case of spherical and cylindrical void
shapes respectively, when the loading is purely hydrostatic (see Danas
and Aravas (2012) and Mbiakop et al. (2015b)).

Finally, the interpolation function 𝛼(𝑓,𝑤) in (3.9) is introduced to
allow for a better calibration of the proposed model with corresponding
finite element (FE) representative volume element (RVE) simulations
conducted in Section 5. In particular, 𝛼 should be chosen so that:

• 𝛼 = 1 when 𝑓 is lower than a prescribed minimum porosity 𝑓𝑚𝑖𝑛,
thus leading to a ‘‘cosh’’ type response in the hydrostatic limit,
similar to that of the Gurson model. Cao et al. (2015) have shown
that, when the voids are initially spherical, the ‘‘cosh’’ functional
form is more accurate for porosities less than 1%.
6

F

• 𝛼 = 0 as 𝑓 → 1. The rate at which 𝛼 goes to zero for larger
porosities depends on the aspect ratio 𝑤 and in general is slower
as 𝑤 → 0, i.e., for small values of 𝑤, the weight of the ‘‘cosh’’
term is larger than that of the quadratic term in (3.9).

In view of the above, we propose the following exponential expression
for 𝛼, i.e.,

𝛼(𝑓,𝑤) =

⎧

⎪

⎨

⎪

⎩

1, 𝑓 < 𝑓min,

𝑒−
𝑓min
𝑘(𝑤) (𝑓−𝑓𝑚𝑖𝑛), 𝑓 ≥ 𝑓min,

and 𝑘(𝑤) = 𝐴𝑤 + 𝐵,

(3.12)

with 𝐴 = −8.6 × 10−4, 𝐵 = 1.06 × 10−3 and 𝑓min = 0.005. For these
values, the predictions of the proposed model are found to best fit
the corresponding numerical FE calculations for the stress and porosity
evolution presented in Section 5.2 and will be used in all subsequent
calculations. In general, 𝛼(𝑓,𝑤) can be used as a calibration function
o fit numerical or experimental data.

In the case of spherical voids (𝑤 = 1), when 𝛼 = 0, the proposed
odel reduces to the MVAR (Modified VARariational) model of Danas

nd Aravas (2012), whereas, for 𝛼 = 1, the GVAR (Gurson VARiational)
odel of Cao et al. (2015) is recovered. These two models take into

ccount the evolution of porosity as well as the evolution of the aspect
atios and the orientations of the voids. Therefore, even when they
re initially isotropic, they eventually develop a deformation-induced
nisotropy, in general. To keep the proposed new model sufficiently
ccurate and, at the same time, as simple a possible, we consider only
he evolution of the porosity and assume that change of the void aspect
atio 𝑤 has a negligible effect, so that the model is always isotropic;
.e., we adopt a formulation similar to the Gurson model, which is now
nriched with an additional microstructural parameter, the fixed aspect
atio 𝑤 of the voids.

emark 3. The yield condition (3.9) can be written alternatively in
erms of an ‘‘effective stress’’ 𝜎∗, such that

(𝝈, �̄�𝑝, 𝑓 , 𝑤) = 𝜎∗(𝜎𝑒, 𝑝, 𝑓 ,𝑤) − 𝜎𝑦(�̄�𝑝) = 0,

here 𝜎∗ is now defined implicitly from the condition

1
3𝑚

( 𝜎𝑒
𝜎∗

)2
+ 4

9𝑚

[

(1 − 𝛼) 𝑞2

(

3 𝑝
2 𝜎∗

)2

+ 2 𝛼
(

cosh
3 𝑝
2 𝜎∗

− 1
)]

− (1 − 𝑓 ) = 0.

This form of the yield condition is convenient, when a viscoplastic
(rate-dependent) version of the model is of interest. In such a case,
the flow stress 𝜎𝑦 depends on both �̄�𝑝 and the plastic strain-rate ̇̄𝜀𝑝 and
an ‘‘overstress’’ can be defined in terms of the effective stress 𝜎∗. An
alternative and perhaps more rigorous way to include rate-dependency
is the use of the corresponding viscoplastic LCC estimates (Danas, 2008;
Danas et al., 2008b). This, however, is beyond the scope of the present
study.

Remark 4. We remark here that an alternative realistic modeling ap-
proach would be to extend the models of Kailasam et al. (1997), Danas
and Ponte Castañeda (2009a) or Danas and Aravas (2012) and consider
a finite number of void families with the same shape but different orien-
tations. In such a case, the general homogenization theory of Kailasam
and Ponte Castañeda (1998) for multiple-phase composites could be
used. This, however, would lead to a large number of microstructural
variables, along with corresponding evolution equations, and would
render the model unnecessarily complicated and difficult to implement
numerically or calibrate in real-life applications. As will be discussed in
Section 5, the proposed isotropic model, with the appropriate choice
of the fitting parameters 𝐴,𝐵, and 𝑓𝑚𝑖𝑛 in the interpolation function
𝛼(𝑓,𝑤), is able to reproduce very well the results of detailed unit cell

E simulations.
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Fig. 3. Variation of the normalized effective plastic coefficients with void aspect ratio 𝑤 (logarithmic scale) at three different porosity levels (𝑓 = 1%, 3%, 5%). Note the different
cales used on the vertical axes.
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Fig. 3 shows the variation of the effective plastic coefficients 𝑚
nd 𝑚 with the void aspect ratio 𝑤 for three values of porosity (𝑓 =
%, 3%, 5%). Note the different scales used on the vertical axes. In Sec-
ion 3.2.2 that follows, it is shown that the deviatoric and volumetric
arts of the plastic deformation rate 𝐃𝑝 are inversely proportional to
 and 𝑚 , respectively (Eqs. (3.13)–(3.14) below). The results shown

n Fig. 3 indicate that a porous material whose microstructure consists
f isotropically distributed and randomly orientated oblate voids with
ow aspect ratios (𝑤 < 0.1) would exhibit a much softer plastic response
ompared to porous materials with spherical or prolate voids. It is also
nteresting to note that the effective plastic coefficient 𝑚 associated
ith the hydrostatic response appears to be more sensitive to the shape
f the voids compared to the effective plastic shear coefficient 𝑚,
specially at lower porosity levels. This implies that, for low values
f porosity, the void shape affects strongly the plastic dilatational
ehavior of the material and, consequently, the corresponding porosity
volution during plastic deformation.

.2.2. Flow rule and evolution equations
The plastic part of the rate-of-deformation tensor is given by the

ssociated flow rule (‘‘normality’’), i.e.,

𝑝 = �̇�𝐍, 𝐍 ≡ 𝜕𝛷
𝜕𝝈

= 3
2 𝜎𝑒

𝜕𝛷
𝜕𝜎𝑒

𝝈𝑑 + 1
3
𝜕𝛷
𝜕𝑝

𝜹, (3.13)

where �̇� ≥ 0 is the ‘‘plastic multiplier’’, which vanishes when the
response is elastic and is determined from the ‘‘consistency condition’’
�̇� = 0 during plastic flow. The derivatives 𝜕𝛷∕𝜕𝜎𝑒 and 𝜕𝛷∕𝜕𝑝 are
calculated from (3.9):
𝜕𝛷
𝜕𝜎𝑒

= 2
3𝑚

𝜎𝑒
𝜎2𝑦
,

𝜕𝛷
𝜕𝑝

= 4
3𝑚

1
𝜎𝑦

[

(1 − 𝛼)𝑞2
3 𝑝
2 𝜎𝑦

+ 𝛼 sinh
(

3 𝑝
2 𝜎𝑦

)]

. (3.14)

In the present model, two variables evolve during plastic flow: (i)
he accumulated plastic strain �̄�𝑝 upon which depends the yield stress
f the matrix 𝜎𝑦 and (ii) the porosity 𝑓 . The first is an internal variable
erving to characterize the plastic state in the matrix phase, and the
econd is a microstructural variable that characterizes the void volume
raction in the porous material.

For the evolution of �̄�𝑝, we consider that the macroscopic plastic
ower 𝝈 ∶ 𝐃𝑝 in the porous material is dissipated entirely in the plastic

deformation of the matrix and equals the microscopic plastic power
(1 − 𝑓 )𝜎𝑦 ̇̄𝜀𝑝, which leads to Tvergaard and Needleman (1984)

̇̄𝜀𝑝 = 𝝈 ∶ 𝐃𝑝
𝑝 = �̇� 𝝈 ∶ 𝐍

𝑝 ≡ �̇� 𝑔�̄�𝑝 . (3.15)
7

(1 − 𝑓 )𝜎𝑦(�̄� ) (1 − 𝑓 )𝜎𝑦(�̄� )
The porosity evolution in the plastic regime is derived from mass
conservation by ignoring the contribution of elasticity and taking into
account the plastic incompressibility of the matrix material, such that

̇𝑓 = (1 − 𝑓 )𝐷𝑝
𝑘𝑘 = �̇�(1 − 𝑓 )𝑁𝑘𝑘 ≡ �̇� 𝑔𝑓 . (3.16)

.3. The elastic–plastic tangent modulus

In the present section, we determine the elasto-plastic modulus
𝑒𝑝, which is a fourth-order tensor that relates the Jaumann (or co-

otational) rate of the Cauchy stress
∇
𝝈 to the total rate-of-deformation

tensor 𝐃.
During plastic flow, 𝐃𝑒 = 𝐃 − 𝐃𝑝 = 𝐃 − �̇� ∶ 𝐍 and the elastic

constitutive Eq. (3.2)1 becomes
∇
𝝈=  ∶ 𝐃𝑒 =  ∶ 𝐃 − �̇� ∶ 𝐍, (3.17)

here  = −1 = 2𝜇 + 3 𝜅  , with 𝜇 and 𝜅 defined in (3.3). The
onsistency condition �̇� = 0 is written as

̇ = 𝜕𝛷
𝜕𝝈

∶
∇
𝝈 + 𝜕𝛷

𝜕�̄�𝑝
̇̄𝜀𝑝 + 𝜕𝛷

𝜕𝑓
̇𝑓

= 𝐍 ∶ ( ∶ 𝐃 − �̇� ∶ 𝐍) + �̇� 𝜕𝛷
𝜕�̄�𝑝

𝑔�̄�𝑝 + �̇�
𝜕𝛷
𝜕𝑓

𝑔𝑓 = 0

where (3.17), (3.15), and (3.16) have been taken into account. The last
equation yields

�̇� = 1
𝐿
𝐍 ∶  ∶ 𝐃, where 𝐿 = 𝐍 ∶  ∶ 𝐍 +𝐻 with

𝐻 = −
(

𝜕𝛷
𝜕�̄�𝑝

𝑔�̄�𝑝 +
𝜕𝛷
𝜕𝑓

𝑔𝑓

)

. (3.18)

he sign of the ‘‘hardening modulus’’ 𝐻 determines whether the porous
material is hardening (𝐻 > 0) or softening (𝐻 < 0) at the given stress
tate and internal and microstructural variables. Substitution of (3.18)
n (3.17) yields the elasto-plastic tangent modulus 𝑒𝑝, which reads
∇
= 𝑒𝑝 ∶ 𝐃, 𝑒𝑝 =  − 1

𝐿
( ∶ 𝐍)( ∶ 𝐍). (3.19)

ote that 𝑒𝑝 has both the minor (𝑒𝑝𝑖𝑗𝑘𝑙 = 𝑒𝑝𝑗𝑖𝑘𝑙 = 𝑒𝑝𝑖𝑗𝑙𝑘) and major
𝑒𝑝𝑖𝑗𝑘𝑙 = 𝑒𝑝𝑘𝑙𝑖𝑗) symmetries.

Remark 5. The numerical implementation of models, such as the one
proposed, in finite element codes has been extensively discussed in the
literature (e.g., see Section 3 in Aravas and Ponte Castañeda (2004)
and Section 3.1 in Cao et al. (2015)). In this work, the proposed model
is implemented in the general-purpose finite element code ABAQUS
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Fig. 4. (a) Yield curves on the normalized 𝑝 − 𝜎𝑒 plane. (b) Influence of void aspect ratio 𝑤 on the variation of normalized volumetric plastic strain-rate 𝑁𝑘𝑘; results are shown
or porosities 𝑓 = 1% (solid lines) and 𝑓 = 5% (dashed lines).
ia a User-MATerial (UMAT) subroutine. The numerical integration of
he constitutive equations is similar to that used for the Gurson model
nd is based on the methodology of Aravas (1987). Alternatively, the
mplicit numerical integration algorithm proposed recently by Bouby
t al. (2023) in the context of Generalized Standard Materials (GSM)
ould be used. This would require though the introduction of the
‘Lagrangian porosity’’ as an additional microstructural variable.

. Results: Yield surfaces

To illustrate the effect of the void shape on the plastic behavior
f the porous material, instantaneous yield curves on the normalized

‘meridonial’’ 𝑝 − 𝜎𝑒 plane are shown in Figs. 4–7. Since the isotropic
ield function is independent of the Lode parameter (Danas et al.,
008b), only the results for the first quadrant are presented on the 𝑝−𝜎𝑒
lane.

For later reference, we define the stress triaxiality and Lode angle4

s

𝛴 =
𝑝
𝜎𝑒
, 𝜃 = 1

3
arcsin

(

−27
2

det 𝝈𝑑

𝜎3𝑒

)

, (4.1)

4 It should be noted here that alternative definitions for 𝜃 can be found in
he literature (see for instance Danas et al. (2008b) and Danas and Ponte Cas-
añeda (2009a)) and any of them can be adopted, as long as consistency is
ept in subsequent calculations.
8

and the strain triaxiality as

𝑋𝐸 =
𝐸𝑚
𝐸𝑒𝑞

, 𝐸𝑚 =
𝐸𝑘𝑘
3
, 𝐸𝑒𝑞 =

√

2
3
𝐄𝑑 ∶ 𝐄𝑑 (4.2)

where 𝐸𝑚, 𝐸𝑒𝑞 are norms associated with the hydrostatic and deviatoric
(𝐄𝑑) parts of the logarithmic strain tensor 𝐄.

Fig. 4a shows the effect of the void shape on the effective yield
curves for two different porosity values, 𝑓 = 1% and 5%, and three
different aspect ratios, 𝑤 = 0.01, 0.10, and 1. Therein, we observe that
as the aspect ratio 𝑤 decreases from 1 to 0.01 (i.e., voids change from
spherical to flat penny shape), the yield surfaces shrink significantly,
especially at stress states near the ‘‘hydrostatic’’ point (the point on
the curve corresponding to 𝜎𝑒 = 0 on the pressure axis). It should be
also noted that, as the aspect ratio 𝑤 decreases from 1 to 0.01, the
hydrostatic point decreases faster than the corresponding ‘‘shear’’ point
(the point on the curve corresponding to 𝑝 = 0 on the 𝜎𝑒-axis). Also,
for a fixed value of the aspect ratio 𝑤, the yield surface shrinks with
increasing porosity, as expected.

Fig. 4b shows the effects of stress triaxiality on the normalized vol-
umetric plastic strain-rate 𝑁𝑘𝑘 = 𝐷𝑝

𝑘𝑘∕�̇� = 𝜕𝛷∕𝜕𝑝, which is proportional
to ̇𝑓 and controls the evolution of porosity during plastic flow (see
(3.13) and (3.16)). As the aspect ratio 𝑤 decreases, the corresponding
value for 𝑁𝑘𝑘 increases significantly for higher stress triaxialities, with
the effect being more pronounced at higher porosities. This implies
that, during plastic deformation and especially at high stress triaxiality
conditions, porosity is expected to increase rapidly for microstructures
consisting of flat oblate voids. Such effects are less important for prolate
voids (𝑤 > 1) and are not shown here for brevity.
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Fig. 5. Normalized (a) ‘‘hydrostatic’’ and (b) ‘‘shear’’ points as functions of the aspect ratio 𝑤 (logarithmic scale) at three different porosity levels (𝑓 = 1%, 3%, and 5%).
Fig. 6. Yield curves on the normalized 𝑝 − 𝜎𝑒 plane for a random distribution of oblate voids (𝑤 = 0.05) with 𝑓 = 1%, spherical voids at a low porosity of 𝑓 = 2.6% and spherical
voids at a high porosity of 𝑓 = 7.7%.
Fig. 5 shows the normalized hydrostatic 𝑝∕𝜎𝑦 and shear 𝜎𝑒∕𝜎𝑦 points,
respectively, as a function of the void aspect ratio 𝑤 at three different
porosity values 𝑓 = 1%, 3%, and 5%. As 𝑤 decreases, both the
hydrostatic and shear points decrease rapidly, with the former being
more sensitive to the void shape changes. Once again, this behavior
confirms the non-trivial dependence of the plastic response on the void
shape parameter.

Fig. 6 showcases the paramount differences between microstruc-
tures with spherical and oblate voids. More specifically, we show the
yield curves for a random distribution of (a) oblate voids (𝑤 = 0.05)
with 𝑓 = 1%, (b) spherical voids at a low porosity of 𝑓 = 2.6%,
and (c) spherical voids at a high porosity of 𝑓 = 7.7%. In cases
(b) and (c) with spherical voids, the values of porosity were chosen
so that the corresponding yield surfaces have the same hydrostatic
(𝑓 = 7.7%) and shear points (𝑓 = 2.6%) as the yield surface of the
microstructure comprising oblate voids with 𝑓 = 1%. Comparison of
the results for microstructures (a) and (b) shows that the response of
a material whose microstructure consists of oblate voids is much more
9

compliant than that with spherical voids, especially for stress states in
which the hydrostatic component dominates (𝑝 ≫ 𝜎𝑒). On the other
hand, comparison of the results for microstructures (a) and (c) shows
that a material comprising a random distribution of oblate voids with
𝑓 = 1% and 𝑤 = 0.05 exhibits fairly similar behavior with a material
consisting of spherical voids with approximately eight times higher
porosity, i.e., 𝑓 = 7.7% and 𝑤 = 1. Such results are indicative of the
fact that, even at low porosities, the existence of flat voids (the shape
of which deviates considerably from spherical) can have a detrimental
effect on the effective plastic response of the porous material.

We conclude this section with a parametric analysis of the effects of
function 𝑘(𝑤), used in (3.12) to define the calibration function 𝛼(𝑓,𝑤),
on the predictions of the model. Fig. 7 shows the influence of 𝑘 on
the shape and size of the yield surface and on the volumetric plastic
strain-rate 𝑁𝑘𝑘. For demonstration purposes, fixed values for the void
aspect ratio (𝑤 = 0.10) and porosity (𝑓 = 5%) are used. As the value
of 𝑘 increases, the hydrostatic point moves ‘‘outwards’’, thus making
the response stiffer for stress states with 𝑝 ≫ 𝜎 , whereas the material
𝑒
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response in shear is marginally affected (Fig. 7a). Accordingly, the
corresponding values of 𝑁𝑘𝑘 decrease as 𝑘 increases, and this leads
to reduced porosity growth, especially at higher stress triaxialities.
We also note that the parameter 𝑘(𝑤) does not affect the hydrostatic
point when 𝑤 = 1 (spherical voids). Also, in this special case of
spherical voids (𝑤 = 1), the model recovers the Gurson hydrostatic
point irrespective of the value of 𝑘(1) and 𝛼. Nonetheless, the rate at
which the yield curve approaches that point is obviously affected by 𝛼
(see discussion in Mbiakop et al. (2015b)).

5. Results: Numerical RVE homogenization and model assessment

In this section, the analytical model presented in Section 3 is cali-
brated by comparing its predictions to the results of numerical homoge-
nization calculations of representative volume elements (RVE). Results
from finite element calculations of periodic unit cells that contain uni-
formly distributed and randomly orientated voids of various shapes in
an isotropic matrix are presented first. To ensure accurate comparisons
with the predictions of the homogenization model, assessment of the
typical RVE characteristics, such as isotropy of the cells and effective
behavior convergence, is carried-out.

5.1. Unit cell calculations

Concerning validation techniques at the material (constitutive) level,
the numerical periodic homogenization method may be used as a test-
bed to assess the predictions of analytical homogenization models. The
methodology used herein can be summarized as follows. A suitably
chosen RVE containing randomly oriented and distributed with uniform
probability spheroidal voids of predefined initial volume fraction is
loaded and periodic boundary conditions are applied. The finite ele-
ment method is used to determine the local5 displacement, strain, and
stress fields in the RVE. The local fields are then used to calculate the
corresponding average fields. The fitting parameters 𝐴,𝐵, and 𝑓𝑚𝑖𝑛 used
n the interpolation function 𝛼 in (3.12), are then adjusted to align the
redictions of the analytical model with the average numerical results.

In this work, cubic unit cells with side lengths 𝐿1 = 𝐿2 = 𝐿3 = 1 and
nitial volume 0 = 𝐿1 𝐿2 𝐿3 = 1 are filled with uniform distributions
f randomly oriented voids of the same spheroidal shapes and initial
orosities. The unit cells are subjected to constant average stress tri-
xiality and Lode angle 𝜃 under periodic boundary conditions (Michel

5 In the context of homogenization theory, these are the fields that develop
t the scale of the various heterogeneities as opposed to the (measurable) fields
t the scale of the applied macroscopic loads.
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s

et al., 1999). Implementation of such constant stress triaxiality and
Lode parameter loading conditions has been discussed extensively in
the literature (e.g., Barsoum and Faleskog (2007), Dunand and Mohr
(2014), Mbiakop et al. (2015b)) and for the sake of brevity they will
not be repeated here; the reader is referred to Section 4.2 in Mbiakop
et al. (2015b) for more details.

Using as an indicator both previous numerical results (Danas and
Aravas (2012), Cao et al. (2015), Anoukou et al. (2018), Zerhouni
et al. (2021)) and the results presented in Section 4, only oblate voids
(i.e., 𝑤 ≤ 1) are considered, since prolate voids exhibit substantially

eaker effects on the effective response. The geometry of the unit cells
s generated using the Random Sequential Adsorption (RSA) method
iscussed in Anoukou et al. (2018). Therein, ellipsoidal voids of the
ame or different size are sequentially added in the unit cell imposing
non-overlapping condition based on distance evaluation of quadric

bjects of general shape. When the desired volume fraction (porosity)
s reached, periodic images of any ‘‘incomplete’’ voids at the cube
oundaries are added.

The matrix material is assumed to be isotropic with Young’s mod-
lus 𝐸 = 300 𝜎0, Poisson’s ratio 𝜈 = 0.3, and a flow stress following
ower law isotropic hardening6 of the form

𝜎𝑦(�̄�𝑝) = 𝜎0

(

1 + �̄�𝑝

𝜀0

)1∕𝑛
, (5.1)

s used, where 𝑛 ≥ 1 is the hardening exponent and 𝜀0 = 𝜎0∕𝐸. A
hardening exponent of 𝑛 = 10 is used in all calculations. The average
porosity in the unit cell is calculated using the corresponding average
deformation gradient as

𝑓 = 𝚟


=

det 𝐅 − 𝚖∕0
det 𝐅

, det 𝐅 = 
0
,  = 𝚖 + 𝚟, (5.2)

where 𝚖 is the current matrix volume, 𝚟 the current volume of the
voids, and  the current total volume of the RVE.

5.1.1. Computational aspects of RVE simulations
The FE calculations are carried-out using the commercial finite

element program ABAQUS/Standard (Abaqus, 2021). The power-law
isotropic hardening model for the matrix material is implemented via a
User HARDening (UHARD) user-subroutine provided by ABAQUS/Stan-
dard. Loading under constant stress triaxiality and Lode angle is achiev-
ed through a time-dependent nonlinear constraint, which is enforced

6 Any other hardening law including kinematic hardening as discussed
n Cheng et al. (2017) may be used if required. This is however beyond the
cope of the present study.
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Fig. 8. Cross-plots of average normalized von Mises stress 𝜎𝑒𝑞∕𝜎0 and porosity 𝑓 as functions of Lode angle 𝜃 for 𝑤 = 0.3 and for three different number of voids (𝑁𝑝 = 30, 60,
and 90), at an initial porosity level (a) 𝑓0 = 1% and (b) 𝑓0 = 5%.
at every increment using the Multiple Point Constraint (MPC) user-
subroutine in ABAQUS/Standard.

All meshes are generated with the mesh generation program NET-
GEN7 (https://ngsolve.org). Ten-node quadratic tetrahedral hybrid el-
ements with constant pressure (C3D10H) are used in the simulations.
Mesh convergence studies of microstructures with oblate voids show
that the number of required elements vary from 8.5 × 105 to 1.5 × 106,
depending on the initial porosity and, more importantly, on the void
shape; as the value of the aspect ratio 𝑤 decreases, the number of
required elements increases. It is worth noting that, in the case of
spherical voids (𝑤 = 1), convergence of the effective behavior can be
achieved with mesh densities in the range of 2×105 elements, depending
on the value of the initial porosity; these numbers are much smaller
than the number of elements required for oblate voids with an aspect
ratio 𝑤 = 0.3 for the same initial volume fractions.

The simulations are carried out using parallel computing (20 cpus
per simulation) on a high-performance computing (HPC) cluster; for
oblate voids with low aspect ratios (𝑤 ≤ 0.5), the average computation
time per simulation ranges from 24 to 48 h depending on the mesh
density. It should be pointed-out that simulations for 𝑤 ≤ 0.2 could
not be performed, mainly due to significant meshing quality problems.

7 Alternatively, it is also possible to use the open-source, 3D mesh gener-
ation software GMSH (https://gmsh.info), as discussed recently in Luo et al.
(2023).
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Also, based on the computational times required for 𝑤 = 0.3, we expect
very high computational times to be required for such calculations.

5.1.2. RVE determination and convergence study
It has become clear from previous (e.g. Suquet (1987), Kanit et al.

(2003)) and more recent numerical homogenization studies (Lopez-
Pamies et al., 2013; Benhizia et al., 2014; El Moumen et al., 2014,
2015a,b; Bensaada et al., 2022; Luo et al., 2023) on porous and particle-
reinforced materials that determination of an appropriate RVE requires
to investigate the convergence of the average material behavior with
respect to a number of parameters in the RVE. In porous materials,
these include the number of voids, different realizations of the same
microstructures (different spatial distribution of voids with the same
shape and volume fraction), and, for the model considered in this
work, examination of the RVE’s isotropy. To this end, a systematic
investigation for the determination of RVE characteristics is carried-
out. Unit cell calculations are performed at a constant stress triaxiality
𝑋𝛴 = 1, since moderate to high triaxialities are of interest. Dependence
on the Lode parameter (or equivalently the third invariant 𝐽3 of the
deviatoric stress) is examined through variation of the Lode angle 𝜃.
Results for oblate microstructures with an aspect ratio 𝑤 = 0.3 are
presented in the following. Due to severe mesh distortion issues with
progressing deformation, the calculations were terminated at moderate
average strain levels in this case.

Fig. 8 shows results of the convergence analysis for different number
of voids 𝑁 . Cross-plots for the average von Mises stress and porosity as
𝑝

https://ngsolve.org
https://gmsh.info
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Fig. 9. Cross-plots of average normalized von Mises stress 𝜎𝑒𝑞∕𝜎0 and porosity 𝑓 as functions of Lode angle 𝜃 for three different cell realizations at an initial porosity level (a)
𝑓0 = 1% and (b) 𝑓0 = 5%.
functions of Lode angle 𝜃 (in degrees) at strain levels 𝐸𝑒𝑞 = 0.5% and
7% are presented for microstructures comprising three different void
numbers (𝑁𝑝 = 30, 60, and 90). Note that the vertical axes do not start
at the value of zero. A Lode angle range of 𝛥𝜃 = 120◦ (as opposed
to 60◦) was intentionally scanned in these series of calculations, to
verify the validity of the material isotropy hypothesis of the unit cells.
It can be seen from Fig. 8a that, for a low initial porosity 𝑓0 = 1%, the
scatter in the prediction of the overall porosity evolution is small at
all strain levels, leading to an almost identical behavior for the average
von Mises stress for all microstructures. A qualitatively similar response
is observed for the higher initial porosity of 𝑓0 = 5% (Fig. 8b). Very
good agreement can be observed in the results for the microstructures
comprising 𝑁𝑝 = 30 and 𝑁𝑝 = 60 voids, while a small deviation exists
for the microstructures with 𝑁𝑝 = 90 voids; this difference is more
pronounced at the larger average strain of 𝐸𝑒𝑞 = 7%.

The dependence of the results on the Lode angle is rather weak, at
least for the range of strains considered. Examination of the predictions
for the effective von Mises stress as a function of the Lode angle8 reveals
that for all microstructures considered, there exists approximately a
60◦ symmetry with respect to 𝜃 = 30◦ with maximum differences

8 Recall that a relation of the form 𝜎𝑒 = 𝜎𝑒(𝜃) describes the corresponding
yield curve on the so-called 𝛱-plane (Danas et al., 2008b).
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between corresponding points being less than 2%; this indicates that
the unit cells can be considered, to within this approximation, as close
to isotropic and be used for a fair comparison with the analytical model.

The results depicted in Fig. 8 show that a distribution of 𝑁𝑝 =
30 voids provides sufficient convergence of the effective behavior.
For computational efficiency, all subsequent unit cell calculations are
carried out with a number of 𝑁𝑝 = 30 voids.

Fig. 9 shows the results from the convergence analysis with respect
to three different realizations of the same microstructure comprising
𝑁𝑝 = 30 voids. The RSA algorithm is used to generate multiple isotropic
microstructures with a given initial porosity, void shape, and number
of voids, but with different spatial position of the voids in the matrix
material. Again, we present cross-plots for the average von-Mises stress
and porosity as functions of the Lode angle at different levels of
straining. The range of 𝜃 ∈ [−30◦, 30◦] was examined in this series of
calculations. In the case of an initial porosity 𝑓0 = 1%, Fig. 9a shows a
good agreement among the predictions of the three realizations at the
strain levels considered. A similar behavior is observed at the higher
initial porosity of 𝑓0 = 5% (Fig. 9b). Once again, there exists only a
weak variation of the effective behavior with the Lode angle.

Based on these results, it is reasonable to assume that the Lode
parameter has a weak effect on the effective plastic response of a
porous material especially at the smaller values of 𝑤 considered here.
Therefore, plasticity is assumed to be independent of the Lode angle in
the present analytical model.
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Fig. 10. Comparison of average RVE response with the corresponding predictions of the homogenization model for an initial porosity 𝑓0 = 1% at a constant stress triaxiality
𝑋𝛴 = 1. The shaded areas indicate the scatter of the RVE response over different Lode angles 𝜃 ∈ [−30◦ , 30◦].
Remark 6. Nevertheless, if deemed absolutely necessary, extension
of the present model to include Lode angle-dependence could be em-
ployed through various approaches. One possibility would be to include
in the evolution equation of porosity (3.16) an additional term that
depends on the third invariant of the stress deviator, as suggested
by Nahshon and Hutchinson (2008). Another approach could be the
introduction of an additional, Lode angle-dependent, shear-induced
damage variable along with a corresponding evolution law as proposed
by Zhou et al. (2014). Also, in the spirit of the model proposed by Bai
and Wierzbicki (2008), a Lode angle dependent factor could be intro-
duced directly into the yield function. Finally, one could of course bring
the proposed isotropic projection approach in more elaborate homog-
enization methods (e.g., Danas and Ponte Castañeda (2009a), Agoras
and Ponte Castañeda (2014), Song and Ponte Castañeda (2018)), which
naturally include dependence on the Lode parameter.

5.2. Fitting between the homogenization model and average RVE response

Alignment of the analytical model with the average RVE response is
achieved through variation of the fitting parameters 𝐴,𝐵 and 𝑓𝑚𝑖𝑛 of the
interpolation function 𝛼 in (3.12). In particular, we calibrate directly
those parameters by carrying out calculations with the analytical model
using the same material parameters and loading conditions as in the
RVE simulations. We find that the evolution of the average von Mises
stress and porosity, as predicted by the analytical model, for different
values of the void aspect ratio 𝑤 and initial porosities, fits well the
13
average RVE response for 𝐴 = −8.6 × 10−4, 𝐵 = 1.06 × 10−3 and
𝑓𝑚𝑖𝑛 = 0.005 in Eq. (3.12).

To illustrate the variation in the effective response with the aspect
ratio 𝑤, results are presented for two different microstructures: one
consisting of oblate voids with aspect ratio 𝑤 = 0.3 and another with
spherical voids (𝑤 = 1) for an initial porosity 𝑓0 = 1%. Similar results
were also obtained for an initial porosity of 𝑓0 = 5% but are not shown
here for brevity.

Figs. 10a–d show the comparison between numerical homogeniza-
tion results and the predictions of the analytical model for an initial
porosity of 𝑓0 = 1% and a triaxiality 𝑋𝛴 = 1. The shaded areas in
Fig. 10 indicate fluctuations of the effective behavior from the unit
cell calculations with respect to different values of the Lode angle in
the range 𝜃 ∈ [−30◦, 30◦]; blue color corresponds to oblate voids with
an aspect ratio 𝑤 = 0.3 and red color corresponds to spherical voids
(𝑤 = 1). The black dashed curve corresponds to the predictions of
the proposed analytical model, which does not have any dependence
on the Lode angle. It is observed that the average hydrostatic strain
shown in Fig. 10b as well as the porosity evolution shown in Fig. 10d
are higher in the case of voids with an aspect ratio of 𝑤 = 0.3 compared
to a microstructure with spherical voids. The effect of higher porosity
in the former case is reflected in the corresponding average stress–
strain response (Fig. 10a); this effect is weak though, due the overall
small porosity levels developed. It is also interesting to emphasize that
the numerical and analytical results for the equivalent plastic strain in
the matrix coincide and are independent of the assumed void shape
(Fig. 10c).
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Remark 7. Due to approximations introduced during the meshing of
the voided unit cells, the resulting numerical meshed initial porosity
is slightly higher (𝑓0 ≅ 0.0104) for oblate voids and slightly lower
(𝑓 ≅ 0.0098) for spherical voids than the prescribed value of 𝑓0 = 0.010.

We observe that the largest fluctuations in the scatter of the ef-
fective RVE response with respect to the Lode angle appear in the
porosity evolution of initially spherical voids. This dependence on
the Lode angle, although weak overall, becomes more important with
progressing deformation, which was known from previous studies such
as Danas et al. (2008b), Danas and Ponte Castañeda (2012). This may
be attributed to the fact that, although both microstructures are initially
isotropic, their evolution in the case of finite deformations is rather
different. In the case of 𝑤 = 1, the initially spherical voids change
heir shape in the same average way. This leads to deformation-induced
nisotropic effective behavior at higher strains. On the other hand, in
he case of randomly oriented spheroids, the voids are not expected
o all evolve in the same manner, since deformation of each void will
ltimately depend on its relative orientation with respect to the applied
oad. In this latter case, the microstructure is able to retain fairly well
ts initial isotropy, even at larger strains, showing less sensitivity to the
ode angle parameter.

Overall good agreement is achieved on average between the numeri-
al and analytical results, both for oblate and spherical voids, up to the
train levels attained. This study shows that the proposed analytical
odel, together with the appropriate choice of the fitting parameters

n the interpolation function introduced in (3.12), can capture well the
tress and porosity evolution, when compared to full-field numerical
esults from RVE calculations. In any case, this comparison is not meant
o be exhaustive, but it can be used to gain intuition on the effect of
he void shape upon the effective response of the porous material.

. Results: Model predictions and boundary value problem solu-
ion

In this section, we use the fitted analytical model to obtain pre-
ictions for the stress–strain response, as well as the evolution of
ccumulated plastic strain and porosity, for various initial void shapes
nder different stress states. The constitutive model has been imple-
ented in a standard FE framework and a three-dimensional simulation

f the industrially relevant quasi-static hole expansion test is performed
o showcase the capabilities of the model. In the following results,

matrix material with isotropic hardening of the form (5.1) and a
ardening exponent 𝑛 = 10 is considered.

.1. Evolution of microstructure

In order to investigate the predictions of the new model, material
oint (constitutive) calculations for various microstructural configu-
ations and different stress states (defined by the stress triaxiality
arameter) are carried out. We consider three different microstructures
onsisting of spherical voids and oblate voids with aspect ratios 𝑤 =
0.3 and 𝑤 = 0.1 respectively at constant low (𝑋𝛴 = 1∕3) and high
(𝑋𝛴 = 3) stress triaxiality. The matrix material is characterized by
a Young’s modulus 𝐸 = 300 𝜎0 and a Poisson’s ratio 𝜈 = 0.3 in
all calculations. Also, for comparison purposes, the same calculations
are repeated using the well-known ‘‘Gurson–Tvergaard–Needleman’’
(GTN) model (Gurson, 1977; Chu and Needleman, 1980; Tvergaard and
Needleman, 1984) with a yield function of the form:

𝛷GTN(𝜎𝑒, 𝑝, �̄�𝑝, 𝑓 ) =
(

𝜎𝑒
𝜎𝑦(�̄�𝑝)

)2
+ 2 𝑓 𝑞1 cosh

(

3 𝑞2
2

𝑝
𝜎𝑦(�̄�𝑝)

)

− (1 + 𝑞3 𝑓 2),

(6.1)

here (𝑞1, 𝑞2, 𝑞3) are calibration parameters. For 𝑞1 = 𝑞2 = 𝑞3 =
, Eq. (6.1) reduces to the original Gurson’s yield function. Follow-
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ng Tvergaard (1981), we use the values 𝑞1 = 1.5, 𝑞2 = 1, and e
3 = 𝑞21 in subsequent calculations. We recall that the GTN model,
originating from a modification of the Gurson model, is valid for
spherical voids that remain spherical at finite strains. We show that
the aspect ratio 𝑤 can be viewed as a calibration parameter for the
newly proposed homogenization model, similar to the aforementioned
(𝑞1, 𝑞2, 𝑞3) calibration parameters in the GTN model.

In this set of calculations, 𝜎𝑒 and 𝑝 are increased in proportion
according to the desired triaxiality, and the solution is developed
incrementally. Figs. 11a,b show the stress–strain response and the
corresponding porosity evolution for the three different microstructures
with 𝑤 = 0.1, 0.3, and 1, and triaxialities 𝑋𝛴 = 1∕3 and 3. At large
stress triaxiality 𝑋𝛴 = 3, the effective response appears very sensitive
to 𝑤 and the material becomes gradually softer for lower values of the
spect ratio. Porosity evolves rapidly to extremely large values for all 𝑤,

and increases faster at lower strain levels for oblate voids with smaller
aspect ratios. On the other hand, at a stress triaxiality of 𝑋𝛴 = 1∕3,
the response appears almost insensitive to the aspect ratio for spherical
and oblate voids with an aspect ratio 𝑤 = 0.3, whereas a fast increase of
porosity is predicted for 𝑤 = 0.1. The latter leads to a substantial drop
n the corresponding stress–strain response as shown in Fig. 11a. This
bservation suggests that the initial void shape alone is a predominant
ariable and can induce local softening even at loads with a small
ydrostatic component. This effect is highly nonlinear with respect to
and tends to become stronger for 𝑤 < 0.5.
Figs. 11c,d show the evolution of the equivalent plastic strain and

train triaxiality. For a stress triaxiality of 𝑋𝛴 = 3, the aspect ratio 𝑤
oes affect the accumulated plastic strain in the matrix, whereas this
ffect becomes stronger for lower values of 𝑤. Also, strain triaxiality
eaches higher values at lower overall strains as the void aspect ratio
ecreases, thus indicating that very high dilatational strains develop for
icrostructures containing flat oblate voids. At a low stress triaxiality

f 𝑋𝛴 = 1∕3, the aspect ratio does not affect the equivalent plastic
train in the matrix, whereby higher strain triaxiality is only obtained
or the case of 𝑤 = 0.1, which is consistent with the corresponding
orosity evolution shown in Fig. 11b.

It is also interesting to note that the predictions of the GTN model
re very close to those of the proposed new model with 𝑤 = 0.3 in
he case of the high triaxiality 𝑋𝛴 = 3. In turn, at the lower triaxiality
f 𝑋𝛴 = 1∕3, the GTN predictions are close to those of the proposed
odel with 𝑤 = 1. This indicates that the proposed new model is

ble to reproduce such results with a variation of only one parameter
the aspect ratio 𝑤) that nevertheless incorporates a physical meaning
elated to the microstructure.

Figs. 12a,b showcase the effect of initial porosity on the stress–
train response and porosity evolution for the three different initial
orosity distributions 𝑓0 = 0.05%, 0.1%, and 1% at a stress triaxiality
𝛴 = 3. Solid lines correspond to microstructures comprising oblate
oids with an aspect ratio 𝑤 = 0.1; for reference, microstructures
ith the same initial volume fractions of spherical voids (i.e., with
= 1) are also shown with dashed lines of corresponding color. It

an be seen in all cases that for initial porosities 0.05% and 0.1%
orosity evolution is relatively the same while a substantial increase
n the rate of porosity evolution is observed for an initial porosity
0 = 1%. As expected, softening response initiates at lower strain levels
or very flat oblate voids when compared to spherical voids at the same
nitial void volume fraction; also, for strain levels above 5%, porosity
rows to substantially higher values at corresponding strains and initial
orosities for voids with 𝑤 = 0.1. It is interesting to also note that, up to
elatively small strains of 2.5%, the effective response of a material with
microstructure consisting of penny-shaped voids with 𝑤 = 0.1 exhibits

imilar behavior with a material comprising spherical voids that had
0 times more initial volume fraction in the matrix; this indicates once
gain the strong effect of the shape parameter in accelerating porosity

volution relative to the initial porosity content.
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Fig. 11. Results from microstructural evolution calculations regarding the effective elastic–plastic response as predicted by the proposed homogenization model showcasing the
effect of the aspect ratio parameter. Plots of (a) the normalized von Mises stress 𝜎𝑒∕𝜎0, (b) porosity 𝑓 , (c) equivalent plastic strain �̄�𝑝, and (d) strain triaxiality 𝑋𝐸 are shown for
different values of the aspect ratio 𝑤 both at low and high stress triaxialities. The dashed black line corresponds to the predictions of the isotropic GTN model.

Fig. 12. Results from microstructural evolution calculations regarding the effective elastic–plastic response as predicted by the proposed model showcasing the effect of initial
porosity. Plots of (a) the normalized von Mises stress 𝜎𝑒∕𝜎0 and (b) porosity 𝑓 are shown for different values of initial porosity 𝑓0 at a high stress triaxiality 𝑋𝛴 = 3. Solid lines
correspond to an aspect ratio of 𝑤 = 0.1 and dashed lines with same color correspond to respective initial porosity with 𝑤 = 1.
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Fig. 13. (a) Simulation setup for the HET, which includes the rigid die, blank holder, and conical punch, along with a magnification of the circular specimen showing the mesh
density used. (b) The deformed specimen at different stages of the forming process.
6.2. Simulation of the hole expansion test

The Hole Expansion Test (HET) (ISO 16630:2017 (2017)) is a test
used widely in the steel industry for the determination of the local
formability of a steel grade, using thin sheets of standardized dimen-
sions. For the test, a hole of predefined diameter is created in a circular
thin sheet specimen, which is then clamped between a die and a blank
holder. Next, a conical punch of 60◦ apex angle expands the initial
hole until a through-thickness macroscopic crack appears. The relative
difference between the diameter after rupture and the initial diameter
of the specimen’s inner hole defines the Hole Expansion Ratio (HER),
which serves as a measure of the formability (or ductility) of the steel
grade.

The porous model proposed in this study has been implemented us-
ing a User MATerial subroutine (UMAT) provided by ABAQUS/Standard
module allowing to numerically simulate the HET boundary value
problem. Although the problem can be treated as axisymmetric, full
three-dimensional simulations are intentionally performed, to demon-
strate the capabilities and computational efficiency of the proposed
model. The setup used for the simulations is shown in Fig. 13a. The
black holder, die, and the conical punch are all modeled as rigid
bodies. The circular specimen has an initial thickness 𝑡0, an inner
radius of 𝑅𝑖 = 5 𝑡0, and an outer radius 𝑅𝑜 = 50 𝑡0. To speed up the
calculations, only one quarter of the whole specimen is considered and
symmetry conditions are imposed. The mesh used consists of 104 720
eight-node hexahedral, hybrid elements with constant pressure (C3D8H
in ABAQUS/Standard). The matrix material has a Young’s modulus
𝐸 = 828 𝜎0 and a Poisson’s ratio 𝜈 = 0.3. Two different simulations
of the HET were carried out; one with a microstructure consisting of
spherical voids (𝑤 = 1) and another with very flat voids of aspect ratio
𝑤 = 0.15. An initial porosity of 𝑓0 = 1% was assumed in all cases.
The simulation is carried out quasi-statically in two steps. In the first
step, which is used to simulate the clamping process, a displacement of
|𝑢𝑏𝑙𝑎𝑛𝑘| = 0.011 𝑡 is imposed on the reference node of the blank holder.
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𝑧 0
During the second step, the forming process is simulated by imposing
a total displacement of |𝑢𝑝𝑢𝑛𝑐ℎ𝑧 | = 25 𝑡0 on the reference node of the
rigid punch. The deformed state of the thin sheet during three different
stages of the process is shown in 13b.

Fig. 14 shows contours of porosity 𝑓 and equivalent plastic strain
�̄�𝑝 as predicted by the proposed homogenization model, for the two
different microstructures, at the end of the corresponding simulations.
Fig. 14a shows that porosity evolution is substantially larger when
oblate voids with an aspect ratio 𝑤 = 0.15 are considered, showcasing
the strong effect of void shape on material response. It should be
also noted that the accumulated plastic strain in the structure remains
essentially the same for the two different microstructures considered
(Fig. 14b). This rather interesting result is not trivial. It indicates that,
the equivalent plastic strain can remain insensitive to the underlying
microstructural configuration and, thus, it might not be a sufficient
measure to solely characterize damage accumulation in a structure.

This can be further justified by examining the distributions of �̄�𝑝
and 𝑓 at a cross section of the specimen. Fig. 15a shows contour plots
of �̄�𝑝 and 𝑓 at the end of the simulation for the case with aspect ratio
𝑤 = 0.15. Points A and B, denoted by the red dots in the contours,
are the locations of maximum porosity and equivalent plastic strain
in the specimen respectively. The highest value of the plastic strain
at the end of the simulation is located at the lower (inner) surface
of the sheet. At that point, the specimen is in contact with the rigid
punch and a compressive stress state is developed. The maximum
porosity, however, appears at the upper right corner of the formed
collar, which is under tension. In turn, porosity progressively decreases
as one moves closer to the inner surface. Also, as shown in Fig. 15b,
the evolution of �̄�𝑝 and 𝑓 during the forming process is quite different
at points A and B. At A, porosity progressively increases to high values,
while the equivalent plastic strain also increases moderately. At B,
however, although the equivalent plastic strain progressively increases
to higher values compared to point A, porosity rapidly decreases, since
the structure is under compression at that point.
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Fig. 14. Contours at the end of the analysis of (a) porosity 𝑓 and (b) equivalent plastic strain �̄�𝑝 for microstructures consisting of spherical voids (𝑤 = 1) and oblate voids with
aspect ratio 𝑤 = 0.15.
It should be recalled that, in the context of porous plasticity model-
ing, porosity can be viewed as a degradation (or damage) parameter
for the structural load-carrying capacity. In this sense, macroscopic
cracks can be identified with the regions of accumulated porosity in
the structure. If a loss of stress-carrying capacity criterion was to be
used in the model, based on a critical value of the porosity (e.g., Aravas
and Papadioti (2021)), then, the numerical simulations predict that
crack initiation would take place at the external diameter of the formed
collar where porosity takes its maximum value. This prediction of the
proposed model is qualitatively consistent with recent results from the
experimental realization of the HET (Barlo et al. (2022)).

Such observations verify that selection of the appropriate material
model is critical in structural problems involving ductile materials,
where complex stress states develop. As shown with this example, stan-
dard incompressible plasticity models (such as the von Mises model)
or damage models that only consider a critical value of the equivalent
plastic strain in the criteria for crack initiation should be used with
caution, as they might lead to inaccurate predictions. In case such
models are utilized, either more information for the stress state should
be included in the definition of the critical strain to failure in a
phenomenological sense (e.g., Bai and Wierzbicki (2008)) or models
that include more microstructural information (such as the porosity in
porous elastic–plastic models) should be alternatively considered.

7. Conclusions

In this work, we propose a new rate-independent, elastic–plastic
model for porous metallic materials that consist of microstructures with
randomly distributed and randomly oriented spheroidal voids for the
17
investigation of the initial void shape on the effective response of the
material. In the analytical model, we assume an infinite number of
void families, which are all characterized by the same shape but dif-
ferent orientations. The equivalence between isotropic projection and
orientation averaging is utilized, resulting in a constitutive model that
depends only on the shape of the voids and not their orientations. To
derive a sufficiently accurate model that is simple and computationally
efficient for engineering applications, we take into account porosity
and matrix equivalent plastic strain evolution and assume a negligible
effect of the void shape evolution during plastic flow, so that the model
remains isotropic. In this manner, we are able to take into account
initial void shape effects with a single parameter (the void aspect ratio
𝑤) that enters the formulation seamlessly though homogenization and
characterizes the shape of the randomly oriented voids in the matrix.
The model is fully explicit, resembles closely the Gurson model, and is
easily implemented in standard finite element codes.

The accuracy of the analytical model is then assessed by a com-
parison with results from numerical homogenization. Full-field finite
element calculations are carried out, using three-dimensional unit cells
containing random distributions of spheroidal voids of different volume
fractions and shapes, under various combinations of stress triaxiality
and Lode angle. The convergence of the effective behavior with respect
to the number of voids in the unit cell and different microstructural
realizations is studied. We find that unit cells with as low as thirty
randomly distributed and randomly oriented voids are enough to pro-
vide a behavior sufficiently close to isotropic and thus can be used as
representative volume elements (RVEs) for the type of microstructures
considered in this work. Sensitivity of the average RVE response with
respect to the Lode angle (or equivalently to the third invariant 𝐽 of the
3
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Fig. 15. (a) Distributions of the equivalent plastic strain �̄�𝑝 and porosity 𝑓 at a cross-section of the specimen at the end of the analysis for the case with aspect ratio 𝑤 = 0.15.
(b) Evolution of the corresponding variables during the forming process for points A and B.
deviatoric stress) is found to be relatively weak, especially at smaller
values of the aspect ratio 𝑤, and thus such a dependence is not included
in the analytical model. Good agreement between the average response
of the RVEs and the analytical model is achieved with the introduction
of only a few fitting parameters. It is also found that the average
porosity evolution in unit cells containing flat-shaped voids with a low
aspect ratio is greater compared to those containing spherical voids.
After fitting, the model is used to investigate the effects of void shape
on the homogenized elastic–plastic response of the porous material.
Evolution of microstructure as predicted by the analytical model is
examined both for high and moderate to low stress triaxialities, while
various microstructures consisting of voids with different aspect ratios
are considered. In particular, we predict rapid porosity evolution at low
strain levels as the aspect ratio 𝑤 takes smaller values (i.e., as the voids
become more flat) resulting in significant softening. At lower stress
triaxialities, a fast increase in porosity is observed for very flat penny-
shaped voids (𝑤 = 0.1). This indicates that, even for stress states with a
small hydrostatic component, the void shape effect can lead to overall
softening. Also, for low stress triaxialities, the equivalent plastic strain
appears to be independent of the void shape. It is also shown that the
present model can reproduce the response of the well-known Gurson–
Tvergaard–Needleman (GTN) model by adjusting the void aspect ratio
parameter for a given stress triaxiality.

The model has been implemented in a User MATerial (UMAT)
subroutine provided by ABAQUS/ Standard and the three-dimensional
quasi-static hole expansion test is simulated by considering microstruc-
tures containing spherical and very flat oblate voids. This test is used in
steel industry for the determination of the local formability properties
of steel grades. Porosity is shown to attain much higher levels in the
18
case of oblate voids with an aspect ratio 𝑤 = 0.15 than for spherical
voids. The distribution of equivalent plastic strain in the structure is
found to be practically the same in both cases. It is also observed that
the positions of maximum porosity and maximum equivalent plastic
strain in the specimen do not coincide. These last two observations
come to verify that criteria for loss of load-carrying capacity and crack
initiation employed in continuum damage models should not solely rely
on a critical value of the equivalent plastic strain, but should also take
into account additional information to ensure accurate predictions.

The present model admits several possible extensions. One pos-
sibility could be to consider the limiting case of cracks, i.e., voids
with aspect ratio 𝑤 → 0 together with porosity 𝑓 → 0. An analysis
similar to that used by Willis (Willis, 1977, 1980, 1981) could be
used to derive estimates for porous materials with randomly oriented
cracks. The present model may also be extended in the context of rate-
dependent viscoplasticity, either via the inclusion of strain-rate effects
in the yield stress or by considering the viscoplastic version of the
LCC homogenization method (Idiart and Ponte Castañeda, 2007; Danas
et al., 2008b) or the approach proposed in Leblond et al. (1994). In
that case one should be careful on how to include the interpolation
function introduced in Eq. (3.12). In addition, given that the present
porous model is very similar to Gurson’s (and its extensions), one could
extent it in a straightforward manner to include terms related to void
nucleation such as those presented in Benzerga et al. (2016) and Lode-
dependent porosity evolution similar to that presented in Nahshon
and Hutchinson (2008). Finally, in order to deal with the well-known
problem of mesh-dependent solutions in the finite element implemen-
tation of rate-independent softening materials, a ‘‘regularized’’ version
of the model could be developed (Bergo et al., 2021; Tuhami et al.,
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2022; Wang and Faleskog, 2023). In particular, one may augment the
present model by using an ‘‘implicit’’ non-local formulation to include
porosity gradient effects as described in the recent works of Aravas and
Papadioti (2021) and Aravas and Xenos (2023). Such an extension is to
be addressed in the near future.
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Appendix A. Explicit expressions for the components of  as a
function of 𝒘

In the general case of an isotropic matrix phase and ellipsoidal voids
with semi-axes 𝑎1, 𝑎2, 𝑎3 (with 𝑎1 ≥ 𝑎2 ≥ 𝑎3), one may derive explicit
expressions for the corresponding components of the microstructural
tensor  with respect to a local system defined by the principal axes
of the ellipsoids (i.e., defined by the unit vectors 𝐧(𝑖), 𝑖 = 1, 2, 3). These
expressions are semi-analytical, involve the numerical computation of
elliptic integrals, and can be found in Mura (1987) (see also Appendix
A of Aravas and Ponte Castañeda (2004)). For the special case of
spheroidal voids (where 𝑎1 = 𝑎2 = 𝑎 and 𝑎3 ≠ 𝑎1, 𝑎2), explicit analytical
expressions were derived by Cao et al. (2015), but as functions of the
semi-axes defining the voids shape. However, since the model proposed
in this work admits the aspect ratio 𝑤 = 𝑎3∕𝑎1 = 𝑎3∕𝑎2 = 𝑎3∕𝑎 as
the parameter that defines the void shape, it is desirable to have the
components of  as functions of 𝑤. A simple reformulation of the
expressions presented in the aforementioned work was carried out and
the results are summarized below.

The expressions for the components 𝑖𝑗𝑘𝑙 given in the following
are with respect to the local coordinates system defined by the 𝐧(𝑖)’s.
The non-zero components of the microstructural tensor are given as
functions of 𝑤 by

1111(𝜈𝚖, 𝑤) =
1

2𝜋(1 − 𝜈𝚖)

(

4𝜋 − 1
2
𝐼1 − 𝐽11

)

, (A.1)

2222(𝜈𝚖, 𝑤) =
1

2𝜋(1 − 𝜈𝚖)

(

4𝜋 − 1
2
𝐼2 − 𝐽22

)

, (A.2)

3333(𝜈𝚖, 𝑤) =
1 (

4𝜋 − 1 𝐼3 − 𝐽33
)

, (A.3)
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2𝜋(1 − 𝜈𝚖) 2
1112(𝜈𝚖, 𝑤) =
1

8𝜋(1 − 𝜈𝚖)
[

16𝜋 𝜈𝚖 + (1 − 4 𝜈)(𝐼1 + 𝐼2) − 𝐽12
]

, (A.4)

1113(𝜈𝚖, 𝑤) =
1

8𝜋(1 − 𝜈𝚖)
[

16𝜋 𝜈𝚖 + (1 − 4 𝜈)(𝐼1 + 𝐼3) − 𝐽13
]

, (A.5)

2233(𝜈𝚖, 𝑤) =
1

8𝜋(1 − 𝜈𝚖)
[

16𝜋 𝜈𝚖 + (1 − 4 𝜈)(𝐼2 + 𝐼3) − 𝐽23
]

, (A.6)

1212(𝜈𝚖, 𝑤) = 1 − 1
8𝜋(1 − 𝜈𝚖)

[

(1 − 2 𝜈𝚖)(𝐼1 + 𝐼2) + 𝐽12
]

, (A.7)

1313(𝜈𝚖, 𝑤) = 1 − 1
8𝜋(1 − 𝜈𝚖)

[

(1 − 2 𝜈𝚖)(𝐼1 + 𝐼3) + 𝐽13
]

, (A.8)

2323(𝜈𝚖, 𝑤) = 1 − 1
8𝜋(1 − 𝜈𝚖)

[

(1 − 2 𝜈𝚖)(𝐼2 + 𝐼3) + 𝐽23
]

, (A.9)

here 𝜈𝚖 is the Poisson’s ratio of the matrix material and is set to
𝜈𝚖 = 1∕2 for the plasticity case. The above coefficients are given by

• oblate voids (0 < 𝑤 < 1):

𝐼1 = 𝐼2 =
2𝜋 𝑤

(1 −𝑤2)3∕2
[

cos−1(𝑤) −𝑤(1 −𝑤2)1∕2
]

, 𝐼3 = 4𝜋 − 2 𝐼2

(A.10)

𝐽11 =
3
2

(

𝜋 − 1
4
𝐼3 − 𝐼1
1 −𝑤2

)

, 𝐽22 = 𝐽11, 𝐽33 = 2𝜋 − 𝑤2

1 −𝑤2
(𝐼3 − 𝐼1

(A.11)

𝐽12 = 2𝜋 − 1
2
𝐼3 − 𝐼1
1 −𝑤2

, 𝐽13 =
1 +𝑤2

1 −𝑤2
(𝐼3 − 𝐼1), 𝐽23 = 𝐽13 (A.12)

• prolate voids (𝑤 > 1):

𝐼1 = 𝐼2 =
2𝜋 𝑤

(𝑤2 − 1)3∕2
[

𝑤(𝑤2 − 1)1∕2 − cosh−1(𝑤)
]

, 𝐼3 = 4𝜋 − 2 𝐼2

(A.13)

𝐽11 =
3
2

(

𝜋 − 1
4
𝐼2 − 𝐼3
𝑤2 − 1

)

, 𝐽22 = 𝐽11, 𝐽33 = 2𝜋 − 𝑤2

𝑤2 − 1
(𝐼2 − 𝐼3

(A.14)

𝐽12 = 2𝜋 − 1
2
𝐼2 − 𝐼3
𝑤2 − 1

, 𝐽13 =
𝑤2 + 1
𝑤2 − 1

(𝐼2 − 𝐼3), 𝐽23 = 𝐽13 (A.15)

• spherical voids (𝑤 = 1):

𝐼1 = 𝐼2 = 𝐼3 =
4𝜋
3
, (A.16)

𝐽11 = 𝐽22 = 𝐽33 =
6𝜋
5
, (A.17)

𝐽12 = 𝐽13 = 𝐽23 =
8𝜋
5
. (A.18)

The remaining non-zero components are determined by using the minor
and major symmetries of .

Appendix B. On the equivalence between isotropic projection and
orientation averaging

In this Appendix, we show that the projection operation in the
isotropic space, which is used in Section 3, is equivalent to averaging
over all possible orientations, provided the fourth-order tensor to be
projected possess the minor symmetries. The proof is as follows.

Let 𝐴′
𝜅1𝜅2⋯𝜅𝑛

be the components of a nth-order tensor of even rank
ith respect to a local coordinate system (e.g., a system which is
efined by the orientation vectors 𝐧(𝑖) of the principal axes of the voids)
nd 𝐴𝜆1𝜆2⋯𝜆𝑛 the components of the tensor with respect to a global

(fixed) coordinate system. Then, the components with respect to the
fixed system can be related to the components of the local system
through the corresponding direction cosines 𝑄𝜅𝑖𝜆𝑖 , i.e.,

𝜅1𝜅2⋯𝜅𝑛 = 𝑄𝜅1𝜆1𝑄𝜅2𝜆2 ⋯𝑄𝜅𝑛𝜆𝑛𝐴
′
𝜆1𝜆2⋯𝜆𝑛

. (B.1)

The direction cosines 𝑄𝜅𝑖𝜆𝑖 can be expressed in terms of three Euler

angles (𝜃, 𝜙, 𝜓), so that the orientation average of a tensor can be
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calculated as an average over (𝜃, 𝜙, 𝜓) (e.g., Andrews (2004))9:

⟨𝐴𝜅1𝜅2⋯𝜅𝑛 ⟩

= 1
8𝜋2 ∫

2𝜋

𝜓=0

[

∫

2𝜋

𝜙=0

(

∫

𝜋

𝜃=0
𝑄𝜅1𝜆1𝑄𝜅2𝜆2 ⋯𝑄𝜅𝑛𝜆𝑛 sin 𝜃 𝑑𝜃

)

𝑑𝜙

]

𝑑𝜓

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼𝜅1𝜅2⋯𝜅𝑛 |𝜆1𝜆2⋯𝜆𝑛≡𝐼

(𝑛)

𝐴′
𝜆1𝜆2⋯𝜆𝑛

, (B.2)

here 𝐼 (𝑛) is the rotational average of the direction cosines and can
e thought of as an orientation averaging operator acting on an nth-
rder tensor. By making use of Weyl’s theorem (Weyl, 1946), it can be
hown that 𝐼 (𝑛) can be expressed as the sum of 𝑄𝑛 linearly independent
sotropic tensors of order 𝑛, i.e., it will be of the form (Andrews and
hirunamachandran, 1977)

(𝑛) =
⌊

𝑓 (𝑛)⌋

1×𝑄𝑛

[

𝑀 (𝑛)]

𝑄𝑛×𝑄𝑛

{

𝑔(𝑛)
}

𝑄𝑛×1
, 𝑄𝑛 =

𝑛∕2
∑

𝑟=0

𝑛!(3𝑟 − 𝑛 + 1)
(𝑛 − 2𝑟)!𝑟!(𝑟 + 1)!

, (B.3)

where
{

𝑓 (𝑛)} and
{

𝑔(𝑛)
}

are sets containing the components of linearly
ndependent tensors of order 𝑛 with respect to the fixed and the
aterial coordinate systems respectively and

[

𝑀 (𝑛)] is a coefficients
atrix which can be calculated as

𝑀 (𝑛)]

𝑄𝑛×𝑄𝑛

=
[

𝑆(𝑛)]−1

𝑄𝑛×𝑄𝑛

,
[

𝑆(𝑛)]

𝑄𝑛×𝑄𝑛

=
{

𝑓 (𝑛)}

𝑄𝑛×1

⌊

𝑓 (𝑛)⌋

1×𝑄𝑛
=
{

𝑔(𝑛)
}

𝑄𝑛×1

⌊

𝑔(𝑛)
⌋

1×𝑄𝑛
, (B.4)

nder the assumption that
[

𝑆(𝑛)] is invertible. For even ranked tensors,
ach element of the aforementioned sets is a product of Kronecker
eltas comprising 𝑛∕2 factors (i.e., they are of the form 𝛿𝜅1𝜅2 ⋯ 𝛿𝜅𝑛−1𝜅𝑛 ).
n the special case of fourth-order tensors (i.e., 𝑛 = 4, {𝜅1, 𝜅2, 𝜅3, 𝜅4} →

𝑖, 𝑗, 𝑘, 𝑙}, {𝜆1, 𝜆2, 𝜆3, 𝜆4} → {𝑝, 𝑞, 𝑟, 𝑠}), it follows from (B.3)2 that 𝑄4 = 3
nd the expressions for the quantities

{

𝑓 (𝑛)},
{

𝑔(𝑛)
}

and
[

𝑆(𝑛)] read

𝑓 (4)}

3×1
=

⎧

⎪

⎨

⎪

⎩

𝛿𝑖𝑗𝛿𝑘𝑙
𝛿𝑖𝑘𝛿𝑗𝑙
𝛿𝑖𝑙𝛿𝑗𝑘

⎫

⎪

⎬

⎪

⎭

,
{

𝑔(4)
}

3×1
=

⎧

⎪

⎨

⎪

⎩

𝛿𝑝𝑞𝛿𝑟𝑠
𝛿𝑝𝑟𝛿𝑞𝑠
𝛿𝑝𝑠𝛿𝑞𝑟

⎫

⎪

⎬

⎪

⎭

,
[

𝑆(4)]

3×3
=
⎡

⎢

⎢

⎣

9 3 3
3 9 3
3 3 9

⎤

⎥

⎥

⎦

(B.5)

rom (B.3)–(B.5), after some lengthy but straightforward calculations,
ne ends up with the following expression
(4) ≡ I𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠 = O𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠 + S𝑎𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠, (B.6)

≡ Proj{, }, S𝑎𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠 =
1
12

(𝛿𝑖𝑙𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗𝑙)(𝛿𝑝𝑠𝛿𝑞𝑟 − 𝛿𝑝𝑟𝛿𝑞𝑠), (B.7)

where the isotropic projection tensor Proj{, } is defined in (3.5).
Substitution of (B.6) into (B.2) yields

⟨𝑖𝑗𝑘𝑙⟩ = I𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠′
𝑝𝑞𝑟𝑠 = O𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠′

𝑝𝑞𝑟𝑠 + S𝑎𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠
′
𝑝𝑞𝑟𝑠. (B.8)

If the fourth-order tensor  possesses the minor symmetries, using
(B.7)2 one can show that the second term in (B.8) vanishes, so that

⟨𝑖𝑗𝑘𝑙⟩ = O𝑖𝑗𝑘𝑙𝑝𝑞𝑟𝑠′
𝑝𝑞𝑟𝑠, (B.9)

i.e., orientation averaging of  equals its projection on the space of
fourth-order symmetric isotropic tensors.

Appendix C. Derivation of the yield function for the isotropic
projection model

9 The angles 𝜙 and 𝜃 define the location of one of the global axes with
espect to the local system and the angle 𝜓 defines the orientation of the
ther two global axes. Averaging is carried out over a unit sphere, to cover
ll possible (𝜙, 𝜃) orientations, and over 𝜓 .
20
The yield criterion of the variational LCC method (see Kailasam
t al. (1997), Aravas and Ponte Castañeda (2004)) takes the form
𝝈 ∶ m𝚠 ∶ 𝝈

1 − 𝑓
− 𝜎2𝑦 = 0, (C.1)

here m𝚠 is the effective microstructural fourth-order tensor (anisotro-
ic and compressible in general) defined in (3.11). It is worth noting
hat when 𝑓 = 0, the above criterion becomes identically that of 𝐽2
lasticity.

In the present model, the microstructural tensor m𝚠 is simply re-
laced by its isotropic projection m, which reads

= Proj{, } ∶∶ m𝚠 = 1
2𝑚

 + 1
3𝑚

 .

By performing the algebra, one obtains the two shear and bulk coeffi-
cients given in (3.10), i.e.,

1
3𝑚 (𝑓,𝑤)

=
𝑚𝚠
𝑖𝑗𝑘𝑙 𝑖𝑗𝑘𝑙

𝑚𝑛𝑝𝑞 𝑚𝑛𝑝𝑞
= 1

3
𝑚𝚠
𝑖𝑖𝑗𝑗 , (C.2)

1
2𝑚(𝑓,𝑤)

=
𝑚𝚠
𝑖𝑗𝑘𝑙 𝑖𝑗𝑘𝑙

𝑚𝑛𝑝𝑞 𝑚𝑛𝑝𝑞
= 1

5

(

𝑚𝚠
𝑖𝑗𝑖𝑗 −

1
3𝑚

)

. (C.3)

Next, the expression (C.1) for the yield criterion may be expanded
irectly in terms of the von Mises equivalent stress and the hydrostatic
tress to take the form

1
1 − 𝑓

(

𝜎2𝑒
3𝑚

+
𝑝2

𝑚

)

− 𝜎2𝑦 = 0. (C.4)

ince the latter result is derived from the corresponding estimate of
he variational method, the new estimate for the present isotropic pro-
ection model inherits the significantly stiff response for the nonlinear
ehavior in the case of isotropic matrix and hydrostatic loadings when
ompared to numerical calculations of representative volume elements
RVEs) (Michel and Suquet, 1992). To improve upon this behavior,
ollowing Danas and Aravas (2012) and Mbiakop et al. (2015b), we
ntroduce the correction factor 𝑞2 in the second term (hydrostatic part)
f (C.4), such that

1
3𝑚

(

𝜎𝑒
𝜎𝑦

)2
+ 𝑞2

4
9𝑚

(

3 𝑝
2 𝜎𝑦

)2
−(1−𝑓 ) = 0, 𝑞 =

1 − 𝑓
√

𝑓 ln 1
𝑓

. (C.5)

The value of the correction factor 𝑞 is such that the exact response is
recovered for purely hydrostatic loadings and spherical voids (𝑤 = 1)
(Danas et al., 2008b) or for cylindrical voids with circular cross-section
(𝑤 → ∞) (Danas et al., 2008a; Mbiakop et al., 2015a). Specifically, in
the case of spherical voids, one has (Bele et al., 2017)

𝑚(𝑓 ) =
1 − 𝑓
3 + 2 𝑓

, 𝑚 (𝑓 ) =
4(1 − 𝑓 )

9 𝑓
.

and for purely hydrostatic loading (i.e., 𝜎𝑒 = 0), the required pressure
for yielding is
|𝑝|
𝜎𝑦

= 2
3
ln 1
𝑓
,

a value consistent with the corresponding prediction of the Gurson
model and the rigorous bound of Ponte Castañeda (2012). Expression
(C.4) is expected to give fairly accurate results at high stress triaxialities
and moderate to high porosities. At low porosities and for spherical
voids, earlier studies (Cao et al., 2015) have found that porosity 𝑓
exhibits an exponential dependence on the hydrostatic stress 𝑝. To
obtain such a dependence, one may consider the Taylor expansion of
cosh 𝑥 and ignore higher order terms, i.e.,

cosh
(

3 𝑝
2 𝜎𝑦

)

= 1 + 1
2

(

3 𝑝
2 𝜎𝑦

)2
+ 𝑂

[

(

3 𝑝
2 𝜎𝑦

)4
]

or

(

3 𝑝
2 𝜎𝑦

)2
≅ 2

[

cosh
(

3 𝑝
2 𝜎𝑦

)

− 1
]

. (C.6)

Finally, driven by numerical results and the fact that porosity, even
if it starts at low values, may eventually evolve to larger ones, we
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substitute the quadratic pressure term in (C.5) by a linear combination
of

(

3 𝑝∕(2 𝜎𝑦)
)2 and the right-hand-side of (C.6)2 to arrive at the final

form of the yield function in Eq. (3.9). This combination of terms allows
to have a fairly accurate description at small, moderate and larger
porosities, which is necessary in high triaxiality loads where porosity
can evolve significantly during the deformation process.
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