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Highly porous materials with random closed-cell architecture combine isotropy with high stiffness. Yet
in practice, the complexity of their manufacturing limits the experimental exploration of these materials,
for which studies of the elastic response remain to date mainly theoretical. In this study, we measure
experimentally the elastic moduli of random closed-cell porous-like composites fabricated by 3D-
printing. These materials contain a high volume fraction (up to 82 vol pct) of non-overlapping, poly-
disperse void-like spherical inclusions, which are randomly dispersed in a homogeneous polymer matrix.
We first generate the virtual microstructures of these materials using a random sequential adsorption
(RSA) algorithm, and then use numerical homogenization to compute the size of the material repre-
sentative volume element (RVE). The latter is used to assemble the test samples, whereby the void-like
inclusions are 3D-printed using a gel-like polymer with mechanical properties that are in high contrast
with those of the base polymer thus behaving mechanically as pores. Experiments reveal that the pro-
posed isotropic random closed-cell porous materials have bulk and shear moduli that lie very close to the
theoretical Hashin-Shtrikman upper bounds for an isotropic porous solid.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades, rationally and virtually designed
(meta-)materials have revolutionized our ability to exploit opti-
mized architectures to achieve unprecedented, and if possible
optimal, material properties. Examples are numerous and span
several fields, from electro-magnetism [1,2] and optics [3] to
acoustics [4], mechanics [5,6] and, more recently, mechanobiology
[7,8]. One of the major elements that promoted the rapid prolifer-
ation of such materials, is the advent of additive manufacturing.
Using 3D laser lithography for example, systems with oddly shaped
architectural features can be fabricated with design control down
to only a few nanometers [9]. Equally important, the versatility of
current 3D printing technologies enables the realization of com-
posite architectures that cannot be fabricated in any other way, e.g.,
wood-inspired fiber-reinforced honeycombs [10] and two-phase
co-continuous solids that mimic biological exoskeletons and
block copolymers [11]. This ability to incorporate complex archi-
tectures into a material system, coupled with the robustness of
e.edu (K. Danas).
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modern computational methods, has enabled extending the port-
folio of materials now available to scientists and engineers.

The most ubiquitous case study among architected materials is
that of cellular solids, whereby an interconnected network of solid
struts or plates forms the edges or faces of the cells [12]. Cellular
solids are high-porosity materials with either periodic or stochastic
architecture. In nature, as in most of synthetic structural materials,
cellular solids have a three-dimensional (3D) architecture that
typically consists of a random packing of polyhedron cells. Sto-
chastic foams, as thesematerials are also called, have been a topic of
intense research prior to the advent of metamaterials [13e19]. Over
the past two decades, highly porous metal “sponges” were exten-
sively produced using the replication processing [20], a method
developed by Mortensen and Fitzgerlad in the late 90s [21]. In
recent years, however, these materials have attracted far lesser
attention than cellular solids with a periodic architecture (mainly
lattices). The reason for this is two-fold. First, periodic cellular
materials exhibit higher strength and stiffness than stochastic
foams of the same density because of the higher strain-energy
stored during deformation. The latter is governed by cell wall
stretching rather than bending [22]. Second, lattices are also
naturally amenable to optimization and thus offer unparalleled
flexibility in achieving topology-optimized architectures
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depending, for instance, on the design objective, constituent ma-
terial and manufacturing method. Noteworthy is the octet truss
lattice by Deshpande et al. [23]. By virtue of its ideal nearly linear
scaling of mechanical properties with density, such cellular systems
have paved the way to novel lattice architectures with maximized
strength and stiffness per unit weight. Examples comprise the
ultra-low density lattices of high-strength metals and ceramics,
whereby the cells are composed of either hollow trusses [24e28]
and continuous thin shells [29] (“shellular”) with dimensions
extending from nanometers to microns. These systems efficiently
combine the structural advantages of their stretch-dominated
cellular geometry with the strengthening size effects of their
nano- or microscale features, and are today the lightest, stiffest and
strongest metamaterials achieved. However, the poor scalability
and highly anisotropic response largely limit the use of such
cellular materials for macroscale engineering applications.

From a different viewpoint, there exists a large body of theo-
retical work in the context of homogenization [30,31] dealing with
the optimal elastic properties (stiffness) of composite materials. In
such theoretical studies, and specializing the discussion to porous
materials, it has been known for long time that various micro-
structures may attain the optimal Hashin-Shtrikman (HS) theo-
retical bound for the bulk and/or shear modulus [32,33]. Notable
examples include the Hashin composite sphere assemblage (CSA)
for the bulk modulus [34] and the high-rank laminates [35] among
others [36,37]. However, despite recent advances in current
manufacturing technologies, the fabrication of those theoretical
microstructures remains very difficult (if not impossible), as they
usually comprise a very large (even infinite) number of scales. In
the present study, we take inspiration from these seminal ho-
mogenization studies to realize porous-like microstructures with
near-optimal elastic moduli.

In very recent years, two novel closed-cell lattices, composed of
plates rather than beams or shells, have emerged as promising
candidates for approaching the theoretical limit of isotropic elastic
stiffness. These are the cubic-octet foam proposed by Berger et al.
[38] and the plate-lattice designed by Tancogne-Dejean et al. [39].
The first consists of a combination of two cellular geometries, i.e., a
cubic and an octet foam. The second is obtained by placing plates
along the closestepacked planes of crystal structures with cubic
symmetry. Unlike open-cell truss lattices, closed-cell plate-lattices
involve in-plane deformation of their constituent plates and thus
better utilize material volume at different loading directions. The
potential impact of these two new metamaterials has been mainly
shown numerically by a purely linear elastic analysis, ignoring any
local nonlinear effects due to stress and strain concentrations. In
addition, these studies lack a thorough experimental demonstra-
tion except in a limited number of cases [39]. In particular, due to
the closed-cell geometry and current limitations in the maximum
inclination angle of 3D printing technology, one is unable to remove
(except only partially) the internal non-welded metallic powder or
support material in polymers, thus making the use of relative
density to analyze such materials unsuitable.

In this work, we propose an alternative route to realize isotropic
multi-scale closed-cell porous materials by taking inspiration from
seminal studies on homogenization of two-phase composites
[33,34] containing random distribution of non-overlapping spher-
ical inclusions/voids [40e43]. Specifically, we examine the elastic
response of porous-like solids consisting of non-overlapping, finite
polydisperse (i.e. multiple size) spherical inclusions that are
randomly dispersed into a homogeneous matrix. Those inclusions
are made of a very soft support material, which has a Young's and
bulk modulus that is one thousand times smaller than that of the
matrix phase but of similar density. This result, which is discussed
further in the following, allows treating such materials as “porous-
like” composites in terms of their quasi-static mechanical response
given the very high inclusion/matrix contrast, but not as cellular
solids in terms of relative density since the support material has
(almost) the same density of the matrix. Henceforth, the term
“porosity”, denoted with c, refers to the volume fraction of the
pore-like inclusions such that 1-c denotes the remaining volume
fraction of the matrix phase (and not the relative density like for
cellular solids and foams).

In particular, we exploit the polydispersity of the spherical voids
to generate random porous architectures that provide an experi-
mentally feasible approximation of the Hashin CSA model-
microstructure [34]. This theoretical model is known to achieve
the theoretical limit of isotropic elastic compressibility but inher-
ently involves an “infinite” range of length scales, which makes the
manufacturing of such composites practically impossible to ach-
ieve. To overcome this issue, we develop a numerical protocol that
enables generating RVEs of multi-inclusion material systems,
whereby high volume fractions of spherical voids are obtained by
employing inclusions with very different diameters. The virtual
realizations of such heterogeneous materials are then transformed
into physical microstructures via the use of a 3D polymer printer.
Using relatively large computational resources, we are able to
explore experimentally and numerically a very large range of po-
rosities that spans values from 0 to 0.82. In particular, we show that
our 3D-printed random porous architectures are almost isotropic
(both experimentally and numerically) and yield values of the
effective elastic moduli that lie near the corresponding Hashin-
Shtrikman upper bounds.

2. Methods

2.1. A modified RSA algorithm for the generation of multi-inclusion
systems

Virtual realizations of the porous microstructures containing
finite polydisperse spherical voids are obtained using a random
sequential addition (RSA) procedure. This consists in introducing
randomly, irreversibly and sequentially non-overlapping objects of
arbitrary shape and size (here spherical inclusions) into a cubic cell
[40e43]. The algorithm is highly versatile, and to date it has been
used to generate systems containing random distributions of
monodisperse (i.e. single sized) [42,44] and polydisperse spheres
[43], and more recently also mono- and polydisperse ellipsoids of
arbitrary aspect ratios and orientations [45]. Polydisperse spherical
inclusions are generated from the inclusion center and diameter Di,
and those intersecting the cell outer surfaces are cut off and copied
to the opposite face of the cube. The generated cubic unit cells are
periodic, and contain a finite number of families of identical
spheres (here pores) randomly dispersed in the cell volume. In
Fig. 1a, we show a few representative RSA-generated cubic cells
containing a volume fraction of spherical pores, thereinafter
denoted as c, which ranges from 0.2 to 0.75.

In order to achieve such high volume fractions of inclusions,
especially up to 0.82, we need tomodify the RSA algorithm adopted
in Refs. [43,44]. Specifically, the modified RSA algorithm (which is
described in detail in Refs. [43,44]) takes as input only two pa-
rameters, i.e. the diameter of the largest spherical pore family, i.e.
Dmax, and the desired inclusion volume fraction (i.e. the porosity c).

Following the standard RSA process, the algorithm starts by
generating pores with diameter Dmax until no additional void of
that family can be further inserted without overlapping with any of
the previously accepted voids. The cutoff value of iterations for
moving to the next void family is set to 3000 consecutive rejected
inclusion positions. Next, the algorithm reduces the size Di of the
newgenerated pore family by 1%. At each step, a minimum distance



Figure 1. (a) RSA-generated periodic unit cells of multi-inclusion systems containing a random distribution of spherical voids with different size at various volume fractions. (b)
Optical images of the corresponding 3D-printed unit cells. (c) Micrographs of the 3D-printed porous microstructures obtained upon interrupting the 3D printing process at a build
volume of thickness ~ 500 mm. The pore-like inclusions are built by the 3D-printer using a gel-like support material (i.e. nearly transparent phase). Pores through thickness are also
visible (i.e. light grey phase).
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between any two neighboring inclusions is imposed and the peri-
odicity on opposite faces is enforced. In this study, the minimum
thickness of the matrix ligament between two inclusions is set
equal to ~150 mm, which corresponds to the best resolution of our
3D-printer (see discussion in Section 2.3). This procedure continues
until the desired porosity c is reached. We note in passing that due
to the sequential addition of voids the target porosity is reached up
to a small deviation, which simply corresponds to the volume ratio
between the last (and smallest) inclusion and that of the entire cell.
The generated virtual microstructures are fabricated by 3D printing
(see Fig. 1b and c). This imposes an additional geometric constraint
in the RSA process, which is theminimum attainable pore diameter,
denoted as Dlim (see discussion in Section 2.3). In this study, we set
Dlim¼ 250 mm, which is the smallest pore size experimentally
attainable by our 3D-printer.

2.2. Finite element modeling

Numerical estimates of the homogenized elastic moduli of the
random porous microstructures are obtained by linear elastic finite
element (FE) analysis carried out with Abaqus. Simulations are
performed using standard quadratic 10-node tetrahedral iso-
parametric elements (i.e. C3D10 in Abaqus notation). An isotropic
linear elastic material model is used for modeling the matrix phase
and the elastic moduli of the constituent polymer are measured
experimentally during tensile multi-step relaxation testing (see
Section 2.3). Throughout the numerical study, and given the very
low elastic moduli of the gel-like material, the simulations are
carried out assuming that the spherical inclusions are voids. Mesh-
refined FE models of the porous microstructures are generated
using the automatic mesh generator NETGEN [46]. The converged
RVEs comprise approximately 1.2M degrees of freedom (d.o.f.) for
the lower porosities (c< 0.1), 5M d.o.f. for the moderate ones
(0.3< c< 0.5) and up to 18M d.o.f. for the highest porosity
(c¼ 0.82). Moreover, special care is taken to ensure pairing of the
nodes on opposite faces of the cubic cell, which is necessary for the
application of the periodic boundary conditions discussed in the
following section.
2.2.1. Protocol for the determination of converged RVEs for
experiments

The very first step towards the experimental realization of the
proposed microstructures is the determination of the RVE physical
dimensions that enable meaningful measurements of the effective
elastic moduli in experiments, where the applied boundary con-
ditions are mixed [44]. Specifically, our first goal is to determine, by
means of numerical homogenization and for every given porosity,
the geometrical RVE that yields values of the elastic constants in-
dependent on the applied boundary conditions. To this end, prior to
experimental testing, we carry out an extensive computational
investigation where cubic unit-cells, containing a given volume
fraction of polydisperse pores, are subjected to both periodic
boundary conditions (PBC) and kinematically uniform boundary
conditions (KUBC) (see details in Ref. [47]). Specifically, these
boundary conditions are implemented in a similar fashion to
Ref. [48], and notably are defined such that the displacement field
u(x) at point x in the microstructure is given by

ðPBCÞ: uðxÞ¼ ε,xþ u*ðxÞ; ðKUBCÞ : uðxÞ ¼ ε,x (1)

In these equations, ε denotes the average strain in the cubic cell,
whereas u*ðxÞ represents an L-periodic displacement field that
accounts for the field fluctuations and has volume average equal to
zero. The PBC in Eq. (1) are automatically generated by NETGEN and
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are implemented using the “*Equation” command in Abaqus as
described by Danas in Ref. [51].

The homogenized fourth-order elastic stiffness tensor C is
calculated from the average stress and strain fields using the
constitutive equation [52].

〈sðxÞ〉 ¼ C 〈εðxÞ〉; (2)

where 〈〉 denotes the volume average of the stress s(x) and strain
field ε(x). To compute C, we run six independent calculations [49],
where a uniform macroscopic strain is applied along a specific di-
rection, i.e. εijwith ij ¼ 11; 22; 33; 12; 23; 13 (using the Voigt
notation). The isotropized bulk and shear moduli, hereinafter
denoted as k and G respectively, are then computed by k ¼ C : J= 3;
G ¼ C : K=10, with J; K being the fourth-order hydrostatic and
deviatoric projection tensors, respectively, of the fourth-order
identity tensor Iijkl ¼ ð1=2Þðdikdjl þ dildjkÞ (i; j ¼ 1;2;3). In addi-
tion, since our porous architectures are random, we quantify the
deviation from isotropy of the numerical fourth-order elastic
stiffness tensor C, using the scalar parameter diso ¼

���Ciso � C

���
F
=

k CkF (see Ref. [45]). In this last relation, kAFk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA,AT Þ

q
is the

Frobenius norm of the tensor A; and Ciso is the isotropic stiffness
tensor obtained by projecting the actual stiffness tensorC along the
J; K spaces, i.e. Ciso ¼ 3kJþ 2GK: In the current calculations re-
ported in the present study, the numerical deviation from isotropy
is found to be less than diso <0.6%, thus making the proposed mi-
crostructures isotropic.

Following those definitions, in a recent study [44], we proposed
a roadmap for determining the size of the experimental RVE for
random porous microstructures with monodisperse spheres up to
30% in volume. For these systems, the size of the RVE is univocally
defined by a single geometrical parameter, namely the ratio D/L
between the void diameter D and the characteristic length L of the
cubic cell [42,49,50]. In Fig. 3 of Ref. [44], we reported values of this
ratio that lead to a converged RVE for every porosity explored. To
compute these values, we progressively decreased the diameter of
the voided spheres embedded in the cubic cell with fixed length
L¼ 12mm and porosity c, until we obtained converged estimates
for elastic moduli, i.e. estimates that are independent of the applied
boundary conditions (PBC and KUBC).

The study of the converged RVE for polydisperse systems is
however less straightforward, as these microstructures depend on
multiple geometrical parameters. For the problem under consid-
eration, these are the diameter Di and the number Ni of the in-
clusions of the different pore families (i.e. different sizes). In this
study, we determine the converged RVE for porous media with
polydisperse voids/inclusions bymodifying the protocol in Ref. [44]
to account for polydispersity. Specifically, our strategy now consists
in decreasing progressively the diameter Dmax of the biggest pores
in the RVE, with fixed length L and porosity c, until convergence (up
to a tolerance) of the elastic moduli is achieved bymeans of the two
previously described boundary conditions PBC and KUBC. It is
important to note at this point that a fixed value of the length of the
cubic cell, i.e. L¼ 12mm, is imposed by the available axial exten-
someter (see Section 2.4), which has a nominal gage length of
10mm with a travel of ±2mm.

2.3. Fabrication

We fabricate the above-described 3D microstructures by 3D
printing using the polymer printer EDEN 260VS from Stratasys (see
Fig. 1bec). Our 3D-printer uses a PolyJet technology, where
micrometric sized droplets (i.e. ~16 mm) of liquid photopolymer are
deposited layer by layer onto a build tray and cured instantly under
UV light. The smallest sphere diameter that can be 3D-printed
using this process is about ~250 mm, see Fig. 1c. Specifically, the
employed matrix material is a glassy polymer with trade name
VeroWhitePlus (Stratasys). Prior to testing, the matrix Young's
modulus Em and Poisson's ratio nm were measured via multi-step
relaxation testing at room temperature (see Section 4 in
Ref. [44]), and values were found to be respectively
Em¼ 1270± 120MPa and nm¼ 0.42± 0.02.

Since 3D-printed parts are built layer by layer, a previous layer to
build upon is required. To this end, the closed-cell pores embedded
in the microstructures are printed using a support material that
allows a 3D spherical inclusion to be fabricated (i.e. the nearly
transparent phase in Fig. 1c). The use of the support material to
fabricate internal porous-like geometries is instrumental in current
inkjet 3D printing. Similar to the excess powder or liquid in pow-
der- and liquid-based additive manufacturing technologies, the
support material occupies the closed cells. The gel-like support
material, with commercial name SUPP705 (Stratasys), has a tensile
modulus Es¼ 1.3± 0.1MPa and Poisson's ratio n¼ 0.25. The ob-
tained modulus is almost thousand times smaller than that of the
VeroWhitePlus matrix, which implies (after rudimentary analytical
calculations such as the Hashin-Shtrikman or Voigt bounds), that
the compositematerial behaves effectively as a porousmaterial. We
anticipate here that the difference that is found in calculating the
Hashin-Shtrikman bounds between the porous matrix and the
matrix with soft inclusions is very small, and notably below 0.1%
(see Fig. 3 for a more detailed discussion). These results are also
corroborated in the following by the corresponding FE calculations.

Specifically, the moduli of the support material are measured
experimentally using 5mm-thick strips printed out of this gel-like
material. Every strip specimen is fabricated by 3D-printing length-
wise a U-shaped sandwich structure, whereby a 5mm-thick empty
core is enclosed between two 0.2mm-thick VeroWhitePlus layers.
The strip is then easily removed manually, and mounted onto the
tensile testing machine by means of two rigid heads printed out of
VeroWhitePlus material. A somewhat alternative investigation of
the effect of the support material on 3D-printed microstructures
with pore features is also reported in Section 4 of Ref. [44] and
corroborates independently the present findings.

2.4. Tensile multi-step relaxation testing

The elastic properties of the 3D-printed porous materials,
namely the Young's Modulus and the Poisson's ratio, are measured
by multi-step tensile relaxation experiments. The experiments are
conducted in displacement control at a quasi-static strain rate _ε‾

¼ 10�5 s�1, and consist of seven relaxation steps at average strain
increment of 0.1% for all volume fractions except c¼ 0.82. In this
last case, a displacement corresponding to 0.05% average axial
strain is applied in order to prevent large straining of the thin
matrix ligaments between neighboring pore-inclusions. To pilot
the experiments, we use an in-built computer program. Specif-
ically, at each step of relaxation the difference between two
consecutive force measurements at 3 min-time intervals is
computed, and the material is considered to be at its equilibrium
state if such difference is smaller than ~4 N. To measure the force
signal, we employ a 1.5 kN load transducer with accuracy ±0.1 N,
which is mounted onto the fixed platen of an MTS servo-hydraulic
uniaxial machine. The Young's modulus is then determined
through linear regression of the ground elasticity points measured
at each relaxation step, whereas the Poisson's ratio is computed as
the slope of transverse-axial strain curves, see respectively Fig. 7a
and b in Ref. [44]. During the experiments, we measure simulta-
neously and independently the axial and radial strain signals
respectively bymeans of aMTS 632.13F-20 (accuracy± 0.0075mm)
and an Epsilon 3475-025-M-ST (accuracy± 0.1mm) transducer.



Fig. 3. Plots of the normalized shear (G/Gm) and bulk modulus (k/km) vs. the matrix
volume fraction (1-c). The data points are obtained from FE periodic unit-cell simu-
lations (PBC). The Hashin-Shtrikman upper bound for both an isotropic porous matrix
(solid lines) and a matrix with soft inclusions (dashed lines) are also shown for each
modulus using identical colors. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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In the proposed experiments, we 3D print dog-bone test spec-
imens with a nominal gage length of 60mm and a square gage
section of 12� 12mm2. The gage length comprises five cubic RVEs
with characteristic length L¼ 12mm. The generated RVEs are
assembled length-wise and are enclosed between the sample's
heads, which, in turn, have a solid section in order to ease the
specimen mounting on the uniaxial testing machine, see Fig. 2.
Prior to fabrication, the virtual test specimens are converted into
stereolithography format for subsequent 3D printing.

3. Results

3.1. FE results for the effective bulk and shear moduli

Before we proceed to the experiments, we first carry out an
extensive computational study to estimate the effective elastic
moduli of composites containing random distributions of poly-
disperse spherical voids embedded in a linear elastic matrix. Using
fairly significant computational resources, we explore numerically
porosities ranging from c¼ 0 to c¼ 0.82. We emphasize here that
no exact analytical solutions are available today (except for some
special theoretical microstructures [53]) for the effective elastic
moduli of general random porous solids, thus making the use of FE
simulations instrumental.

The normalized effective shear G/Gm and bulk k/km moduli
(where the subscript “m” denotes the matrix phase) are shown as a
function of the matrix volume fraction, 1 e c, in Fig. 3. The data
points, depicted by solid circles, correspond to the average values of
four different realizations and exhibit a very small standard devi-
ation (below 0.1%) as shown by the error bars. Moreover, for all
porosities analyzed here the deviation from isotropy is less than diso
< 0.6% thereby indicating that our porous materials are fully
isotropic solids. For comparison purposes, the theoretical HS
bounds obtained for both an isotropic porous matrix (solid lines)
and a matrix with soft inclusions with the measured elastic prop-
erties of the gel-like support material (dashed lines) are also re-
ported in Fig. 3. The difference between the FE predictions and the
corresponding HS bounds remains small over the entire range of
porosity explored. We also note in passing (see the inset in Fig. 3)
that the difference that is found by calculating the HS bounds for
the porous matrix and the matrix with the soft inclusions is very
small and notably in the same order as the contrast between the
phases (i.e.z 10�3).

Moreover, this difference decreases gradually for moderate to
low porosities (0< c< 0.4) and for large ones (c> 0.6). Rather
interestingly, this difference is found to be maximum for interme-
diate values of the porosity, i.e, 0.4< c< 0.6. We also note that the
numerical bulk modulus is in much better agreement with the HS
bounds than the shear modulus.

3.2. Determination of the converged RVEs for experiments

In Fig. 4, we report the results of the RVE convergence study.
Specifically, in Fig. 4aed, we discuss the process of obtaining a
Figure 2. (Top) Virtual and (bottom) 3D-printed test specimens with gage length
comprising five cubic RVEs. The RVEs have characteristic length L¼ 12mm.
converged RVE for a representative porosity c¼ 0.6. Following the
method described in Section 2.2.1, we realize different cubic cells
with decreasing diameter Dmax (Fig. 4a), whereas the effective
elastic moduli are obtained from the FE simulations by applying
KUBC and PBC (see Section 2.2.1). The computed bulk (k/km), shear
(G/Gm) and Young's (E/Em) moduli normalized by the corre-
sponding matrix moduli are plotted as functions of Dmax in
Fig. 4bed. In these figures, the diameter of the smallest voids Dmin

is used as secondary horizontal axis. For illustration purposes, we
report in the inset of Fig. 4b the evolution of the ratio Dmax/Dmin as
a function of Dmax. To ensure statistical representativeness, each
data point is the average of five simulations onto different
realizations.

Collectively, the data in Fig. 4bed exhibit similar trends with
values of the KUBC estimates converging rapidly to the predictions
of periodic unit-cell simulations (PBC) as Dmax of the spherical voids
decreases. Note that the decrease of the largest pore diameter Dmax

in the RSA algorithm leads to an increase of the total number of
pores in the RVE (see Fig. 4a), which leads to a rapidly increasing
size of calculations. For every porosity analyzed in this study, we
choose the value of Dmax for which the difference in the KUBC and
PBC moduli estimates is within a 2% deviation, as the largest pore
size that leads to a representative cubic cell.

In Fig. 4e, we summarize the results of the convergence study
conducted for porosities in the range of 0� c� 0.82. Specifically,
we show the evolution of both Dmax/Dmin and Dmin (blue and red
curves respectively) as a function of the matrix volume fraction,
i.e. 1 - c. At small porosities, i.e. 0� c� 0.35, and in agreement
with our earlier study on monodisperse voided RVEs [44], the
ratio Dmax/Dmin remains constant and equal to Dmax/Dmin ¼ 1
(with Dmin¼ 1.24 mm), thereby revealing that a single size of
voids (i.e. a monodisperse distribution) is sufficient to deliver
converged RVEs. This finding is also in agreement with earlier
studies [43,49], where the effective elastic properties for
monodisperse and polydisperse spherical inclusions at equal
volume fraction were found to be nearly identical. On the other
hand, for c� 0.4, polydispersity is essential to achieve high
values of porosity.

In fact, Fig. 4e shows a rapid decrease of the converged Dmin

accompanied by a simultaneous increase of the ratio Dmax/Dmin. This



Fig. 4. (a) Realizations of microstructures containing a random distribution of polydisperse spherical voids at porosity c¼ 0.6. Geometrical parameters for these microstructures
(from left to right) are: (i) Dmax¼ 8.4mm and Dmax/Dmin¼ 4 (ii) Dmax¼ 6.0mm and Dmax/Dmin¼ 4.5, (iii) Dmax¼ 4.8mm and Dmax/Dmin¼ 5, (iv) Dmax¼ 2.3mm and Dmax/Dmin¼ 6.5.
(bed) Results for the (b) bulk, (c) shear and (d) axial normalized moduli obtained from FE simulations with periodic (PBC) and kinematically uniform (KUBC) boundary conditions.
Data points are the average of five realizations. The inset in figure (b) shows the evolution of the ratio between the diameters of the biggest and smallest pores. (e) Results of the
convergence study for a large range of porosity, 0� c� 0.82 showing the ratio Dmax/Dmin and Dmin as a function of the porosity. Recall that the smallest 3D-printable diameter is
Dlim¼ 0.25mm.
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last result indicates that, at large porosities, the material under
study is inherently multiscale and with a very large number of
different sizes. Moreover, values of Dmax within the range of po-
rosities explored can be readily inferred from Fig. 4e. Specifically
our study shows that, the size ratio of the largest to smallest in-
clusion, Dmax/Dmin, increases rapidly with increasing porosity when
c becomes larger than 60% (or 1-c< 0.4). In turn, our analysis re-
veals that at very large porosities (i.e. c> 0.75) the ratio of the
minimal inter-void ligament t (with t¼ 150 mm) to Dmax is very
small, namely t/Dmax< 1/60. Finally, we clarify here that for c> 0.75
the convergence of the RVE is mainly statistical and is achieved by
analysing a large number of different realizations. The reason is that
at c¼ 0.82, we reach the smallest sphere diameter,
Dmin¼Dlim¼ 250 mm, which is attainable by our 3D printer (see
highlighted orange region in Fig. 4e).
3.3. Experimental results for the effective Young's modulus and
Poisson's ratio

In Fig. 5a and Fig. 5b, we show the experimental Young's
modulus E and Poisson's ratio n of porous materials with matrix
volume fraction 0.18 � 1-c � 1 (or 0� c� 0.82). The results are
obtained as the average of at least four specimens and are reported
together with their error bar. The latter corresponds to the standard
deviation on the data. For comparison, the HS upper bounds for an
isotropic porous solid (solid lines) alongside the FE estimates (solid
symbols) are also reported. The latter are computed from data in
Fig. 3 using the standard linear elastic isotropic Hooke's law, i.e.,
E¼ 9 k G/(3k þG) and n ¼ (3k-2G)/(2(3k-2G)).

The experimental data are in very good quantitative agreement
with the numerical FE predictions and lie very close to the HS



Fig. 5. Experimental (a) Young's modulus and (b) Poisson's ratio as a function of 1-c. Results of the FE simulations (solid symbols) together with the Hashin-Shtrikman bounds (solid
lines) are also included for comparison. (c) Numerical estimates (top) and experimental measurements (bottom) of the Young's moduli along three different directions for
moderate-to-high porosity volume fractions. (d) Normalized bulk and shear moduli calculated using the average values of the experimental Young's modulus and Poisson ratio
values in (a) and (b) respectively.
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bounds. Notably, the maximum deviation of the experimental
Young's modulus E from the theoretical HS bound is observed at
moderate porosity (c¼ 0.5), where the data exhibit the highest
variability (see the error bar). On the other hand, the measured
values of the Poisson's ratio exhibit an increasing deviation from
the average as the volume fraction of voided inclusions increases
(see Fig. 5b). The observed sensitivity for the measurements of the
transverse strain at large volume fraction of inclusions is consistent
with an earlier study on highly loaded particulate composites [54].
Moreover, data in Fig. 5b display a small departure from the HS
curve (here not a bound) for c� 0.4.

An important aspect of the experimental study (similar to the
numerical one) is the isotropy of the 3D-printed RVEs. It is noted
here that this is a non-trivial analysis since the RVEs under study do
not exhibit any symmetry planes, as is the case in highly periodic
trusses and lattices. Moreover, from the corresponding numerical
study, we observe that if such RVEs exhibit similar moduli along the
three cubic directions they also have similar values for the effective
simple shear moduli as a consequence of the random dispersion of
the inclusions. Therefore, in order to probe the degree of isotropy in
our 3D-printed composites, we measure the Young's modulus
along the three orthogonal axes of the cubic RVE at selected volume
fractions of void-like inclusions, e.g., c¼ 0.65, 0.7, 0.75, where the
RVEs comprise a very large number of void sizes. This is achieved by
first rotating the generated cubic cell along its three axes and then
by using each rotated cell to construct the virtual test sample. The
latter is then 3D-printed and tested. Attention is here limited to the
axial stiffness, since measurements of the Poisson's ratio along
different directions are likely to be clouded by the larger scatter of
data (see Fig. 5b). For comparison, we repeat exactly the same
process with the numerical RVEs. Results are reported in Fig. 5c and
are averages of three samples. As observed, the measured experi-
mental degree of anisotropy is small. Specifically, the difference
between the largest and smallest average experimental moduli is
equal to 12, 9 and 6% for c¼ 0.75, 0.7 and 0.65, respectively. These
deviations are in the order of the experimental scatter of data for
the pure matrix response (see Section 4 in Ref. [44]). On the other
hand, differences in the numerical predictions are negligible. This is
consistent with the results in Section 3.1, where a deviation of
isotropy below 0.6% is reported.

4. Discussion

Random distributions of finitely polydisperse spherical voids
(gel-like inclusions) embedded into a homogeneous elastic matrix
produce microstructures with elastic moduli that lie close to the
corresponding HS bounds within the range of porosity explored
(see Figs. 3 and 5a). Moreover, these microstructures are isotropic
as revealed by both experiments and simulations (see Fig. 5c and
Section 3.1). As for most of open-cells foams produced by replica-
tion process [13,15], isotropy in our materials is a direct conse-
quence of the microstructural randomness. This feature is in
contrast with the periodicity of most of lattices and trusses
composed of webs or trusses [9,25]. To guide the discussion that
follows, in Fig. 5d, we compare the experimental and numerical
normalized bulk (k/km) and shear (G/Gm)moduli for a large range of
porosity, i.e., 0� c� 0.82. Specifically, we evaluate the experi-
mental bulk and shear moduli via the linear elastic Hooke's law (i.e.



Fig. 6. Strain contours of selected porous microstructures under hydrostatic and shear loadings. Here the bar notation is used to denote the macroscopic applied average strain ε in
the RVE.

Fig. 7. Simulated porous microstructures at c¼ 0.2, 0.5 and 0.82 alongside the nu-
merical strain contours under hydrostatic loading. For the definition of the bar nota-
tion see Fig. 6.
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k¼ E/(3(1-2n)) and G¼ E/(2(1þn))) using the average value of E and
n in Fig. 5a and b (i.e. data points without the error bar). Fig. 5d
clearly shows that the microstructures realized in this study are
near-optimal under hydrostatic loading but are not maximally stiff
under shear loading. Yet, the difference between the data points for
G/Gm and the theoretical HS bound remains small over the entire
range of porosities explored, and decreases rapidly for small and
large c. Moreover, the strong agreement between FE and experi-
ments for all porosities analyzed suggests that the FE analysis
accurately captures the underlying local deformation mechanisms.

In turn, the small differences between the FE and the experi-
ments can be attributed to two different distinct features. The first
is directly linked to the experimental uncertainty in the elastic
moduli of the base polymer matrix as these differences are in the
same order. The second feature is related to the local nonlinear
strains that are developed in the experimental material, whereas
the FE study is carried out only in linear elasticity. Instead, it is
highly unlikely that those small differences are a consequence of
other factors such as the non-uniformity of the cell walls as
observed formost of truss-lattices [25,27]), and internal damage (as
reported for metallic open-cell foams [13,55] at strains larger than
0.02). In fact, the present study, in agreement with prior in-
vestigations [44], shows that the size and shape of the spherical
void-like inclusions are 3D-printed with very high accuracy (Fig. 1).
Moreover, the elastic constants in Fig. 5 are measured at very low
strains (well below 0.01, see Section 2.4) to prevent damage of the
thin matrix ligaments.

In order to rationalize further the underlyingmechanism for the
observed deviation of data from the theoretical predictions
(Fig. 5d), we use the results of FE simulations. Specifically, in Fig. 6,
we show local strain fields for selected porosities, c¼ 0.4, 0.5, 0.65,
0.75 and 0.82, under macroscopic hydrostatic (upper row) and
shear (lower row) PBC loading. We study, in particular, the devia-
tion of the hydrostatic and shear local strains from their average
counterparts. As observed in this figure, the strain deviations are
much higher at moderate porosities, e.g., c¼ 0.4, 0.5, whereas the
fields near the internal boundaries of the voids are found to become
more uniform with increasing porosity (i.e., c> 0.6) (or decreasing
porosity, c< 0.3, not shown here but see Ref. [44]). Furthermore,
the highest strain concentration occurs in the regions between
voids reaching, more often than not, values that exceed signifi-
cantly (more than two times) the applied macroscopic strain in
agreement with numerous previous studies on porous micro-
structures [44] and foams [56,57]. Those local strain fluctuations in
random closed-cell porous solids are a direct consequence of the
interaction between the closely packed spherical voids [44,56]. At
very high porosity however, i.e. at c> 0.65, the matrix ligament
between the voids becomes very thin leading to gradually more
uniform strain fields. Similar observations have also been made in
the context of muscle geometries [58,59] and close-cell random
foams produced by Voronoi tessellation [60]. For these micro-
structures, Roberts and Garboczi [60] have shown, using FE simu-
lations, that a simple scaling relation of the elastic moduli with
relative density lacks clear physical significance.

To correlate the observed local strain fields with the porous
microstructure, we report in Fig. 7 the simulated microstructures at
porosity c¼ 0.2, 0.5 and 0.82 together with the numerical strain
contours for hydrostatic loading. In agreement with the analysis in
Fig. 4e, with increasing porosity the microstructure evolves from a
random monodisperse to a finitely polydisperse distribution of
spheres. As discussed earlier, the largest void diameter is observed
to increase as the porosity increases from c¼ 0.2 to c¼ 0.82 (Fig. 7).
Collectively, the numerical micrographs in Fig. 7 reveal micro-
structural features similar to those reported for other random
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closed-cell foams produced by conventional foaming process. Prior
studies on foamed polymers [56,61,62], glass [63] and ceramics [64]
with porosity between 0.3 and 0.75, show that the microstructure
of thesematerials consists of a homogeneous (random) distribution
of nearly spherical bubbles. These bubbles are found to be uniform
both in size and shape at low porosity [56,61], but gradually
become polydisperse as the porosity increases [61,62]. Interest-
ingly, similar to random closed-cell foams [56,61e64], the present
porous composites (see the magnifications in the bottom row of
Fig. 7) clearly show that there is no unique minimal thickness for
the inter-inclusion ligament t. This is a direct consequence of the
void polydispersity and randomness. At high porosity, e.g. c¼ 0.82
(Fig. 7), the matrix ligament between two neighboring large voids
contains a number of smaller inclusions as is the case also for
foamed polymers and ceramics at low density in Refs. [61,62,64].

Finally, in Fig. 8 we compare, at equal matrix volume fraction 1-c,
the measured normalized axial stiffness of the present closed-cell
random porous materials with recent porous materials as well as
with fully-stochastic foams produced by more conventional
manufacturing processes (e.g. foaming and replication). As seen, the
3D-printed porous solids of this work exhibit normalized Young's
modulus values that rival those of closed-cell stochastic foams. The
study on the porous glass [63] (whose moduli are reported in Ref. [60]
and in Fig. 8) alongside experimental investigations on other foamed
polymers [56,61-62], indicate that the microstructure of these mate-
rials comprises similar geometrical features to those of the present
composites. More interestingly, our materials are almost twice stiffer
than most open-pore microcellular foams [15] and two to five times
stiffer than two of the most performing metamaterials demonstrated
today. The latter are the nano- and macroscale octet-truss lattices
fabricated by 3D laser writing [65]. Hence, the present random 3D-
printed porous materials are promising candidates in terms of relative
stiffness per unit-volume.

The advantages they offer over other fully stochastic cellular
solids, i.e. foams, produced by conventional processing routes (for
which data in Fig. 8 are taken from Ref. [60]) are many. These
notably are the precision of the size and shape of the pore-
inclusions as well as the ability to reach very large and precise
volume fractions in a straightforward and controlled manner.

Moreover, by virtue of their fully random architecture the pro-
posed materials offer the added benefit of being fully isotropic,
whereby most of today's lightest and stiffest metamaterials of the
Fig. 8. Property space map of the Young's modulus versus matrix volume fraction, 1-c,
comparing the present isotropic 3D-printed porous polymers (red solid squares) with
other closed-cell and open-cell foams as well as with nano- and macro lattices of
similar porosity. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
same porosity are not [10,24e29,65]. On the other hand, the pre-
sent materials are not cellular in the sense of relative density (but
behave as such in the mechanical sense). As explained before, the
reason is that the inclusions are made of a gel-like material that,
despite having low axial stiffness and behaving mechanically as a
porous-like phase as shown in section Section 3.3, it has almost the
same density of the matrix material. In order to overcome this
issue, several ideas are currently being explored such as intro-
ducing a minor connectivity between the inclusions and using a
chemically soluble support material. Nonetheless, this is an effort at
the very early stages and is left to a future study.

5. Conclusions

In this study, we probe the elastic deformation of 3D-printed
random porous architectures consisting of non-overlapping, finite
polydisperse spherical void-like inclusions embedded in a polymer
matrix. The void-like spherical inclusions are built by the 3D-
printer using a gel-like support material, whose measured elastic
moduli are in high contrast (1:1000) with those of the glassy
polymer matrix. Specifically, we explore volume fractions of
porosity that extend from c¼ 0 to 0.82. The microstructures are
generated using a modified random sequential adsorption algo-
rithm, where the spherical voided inlusions, with a gradually
decreasing size, are added sequentially and randomly in a cubic cell.
Using 3D-printed dog-bone specimens comprising five converged
representative volume elements (RVE), we measure the elastic
Young's modulus and the Poisson's ratio during tensile multi-step
relaxation testing at room temperature.

The major finding of this study is that our microstructures
provide effective elastic moduli that lie very close to the theoretical
Hashin-Shtrikman upper bound for all range of porosities consid-
ered. Moreover, the proposed composites are isotropic. Experi-
ments (for selected values of porosity) reveal that the differences in
the axial stiffness measured along the three main axes of the cubic
cell are higher for intermediate porosities, for instance in the order
of 10% for c¼ 0.65. Since our results show a very good quantitative
agreement between experiments and simulations, we use the re-
sults of FE to rationalize the observed deviation of the moduli from
the theoretical predictions. Notably, we analyze the local strain
field for selected porous microstructures under macroscopic hy-
drostatic and shear loadings. Our analysis confirms that strain
localization is higher at moderate porosity, whereas the fields
become progressively more uniform as porosity increases.

Finally, a detailed comparison of the normalized Young's modulus
of our porous microstructures with available data in the literature
highlights their structural advantage. Due to the fact that our micro-
structures are generated using a highly versatile random generation
algorithm, the size, shape and orientation of the voided-inclusions can
be precisely controlled during the material design. This capability
engenders a virtually unbounded potential for the design of novel
(meta)materials, where architecture can be efficiently optimized to
achieve a target objective at minimal weight. Indeed, the diversity of
microstructures that can be produced by this route is high. This
attribute, coupled with the wide latitude in selection of the material
fromwhich the porous architecture can be printed (including metals,
glass and ceramics), makes our approach ideally suited to explore a
wealth of microstructures that cannot be synthetically reproduced in
any other way, from rocks and biomaterials to even foamed food.
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