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Abstract

A novel multiscale modeling framework for skeletal muscles based on analytical and numerical homogeniza-
tion methods is presented to study the mechanical muscle response at finite strains under three-dimensional
loading conditions. First an analytical microstructure-based constitutive model is developed and numerically
implemented in a general purpose finite element program. The analytical model takes into account explicitly
the volume fractions, the material properties, and the spatial distribution of muscle’s constituents by using
homogenization techniques to bridge the different length scales of the muscle structure. Next, a numerical
homogenization model is developed using periodic eroded Voronoi tessellation to virtually represent skeletal
muscle microstructures. The eroded Voronoi unit cells are then resolved by finite element simulations and
are used to assess the analytical homogenization model. The material parameters of the analytical model
are identified successfully by use of available experimental data. The analytical model is found to be in
very good agreement with the numerical model for the full range of loadings, and a wide range of different
volume fractions and heterogeneity contrasts between muscle’s constituents. A qualitative application of the
model on fusiform and pennate muscle structures shows its efficiency to examine the effect of muscle fiber
concentration variations in an organ-scale model simulation.

Key words: skeletal muscle, multiscale modeling, muscle mechanics, constitutive modeling,
homogenization, finite element analysis

1. Introduction

Skeletal muscle has a complex hierarchical structure consisting of about 90-99% force-producing fibers
embedded in a connective tissue matrix. Skeletal muscles are distinct from other soft biological tissues
due to their fibers’ ability to produce force by active contraction. Each muscle fiber is surrounded by
endomysium while a group of muscle fibers is surrounded by perimysium to form a muscle fascicle. The
entire muscle volume is wrapped in an epimysial connective tissue covering. The intramuscular connective
tissue (endomysium, perimysium, epimysium) accounts for about 1-10% of a healthy skeletal muscle volume
[24] and plays an important role in the muscle’s functional characteristics, e.g. a) it adds to the passive
elastic response of the muscle [58], and b) it has a major contribution to myo-fascial force transmission
between neighboring fibers and fascicles [20].

On the other hand, muscle diseases (e.g. muscular dystrophy [56], spasticity [50]), large-strain muscle
injuries [46], and immobilization [22] cause significant changes in the microstructural characteristics of muscle
tissue (Fig. 1). Such microstructural changes may affect the macroscopic material behavior of the tissue. In
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Figure 1: Comparison of histological cross-sections between healthy and pathologic muscle tissues affected by (a) Duchenne
muscular dystrophy (scale bar represent 60µm), and (b) cerebral palsy (scale bar represent 100µm). In both cases the amount
of ECM within diseased muscle tissue is increased. The unit vector along the muscle fiber direction in the undeformed
configuration m0 is normal to the plane of the histological cross sections. (Adapted from Tidball and Wehling-Henricks [56]
and Smith et al. [50] with permission.)

addition, regardless of their microstructural organization, both muscle fibers and connective tissue determine
the overall properties of the whole muscle through their functional cooperation.

The physiological functioning of deformable soft tissues, such as skeletal muscles, crucially depends on
their mechanical properties. In addition, an understanding of muscle properties can improve our ability
to restore function when muscle force or movement is lost due to disease, trauma, or disuse [27]. Accord-
ingly, many methods of clinical treatment and surgical interventions largely rely on muscle’s mechanical
effects [29]. Thus, state-of-the-art research and treatment of muscle tissues require highly accurate and
efficient methods for describing their mechanical behavior and characterizing their mechanical response.
Towards this direction, three-dimensional muscle tissue-level constitutive models have been developed based
on the principles of continuum mechanics where muscle tissue is represented as a fiber-reinforced composite
material [e.g. 3, 10, 52, 14]. Such models have been extensively used to investigate complex structural and
functional aspects of skeletal muscle, such as stress-strain response, stress and strain distributions, and shape
deformations of anatomical muscle structures in the context of finite element analysis [e.g. 26, 47, 4, 53].

However, current state-of-the-art continuum constitutive models for muscles generally are phenomenolog-
ical in nature and they do not incorporate any microstructural information, i.e. the distinct contributions
of the muscle constituents, such as their material properties, their geometrical characteristics, and their
volume fractions in the tissue. Therefore, such models are unable to provide insight into skeletal muscle’s
macroscopic behavior upon its microstructural variations. To our knowledge, there is only the very recent
work of Spyrou et al. [54] which proposed a constitutive model for skeletal muscles based on homogenization
of the Voigt type in order to bridge the different length scales of the muscle structure. The Voigt estimate
has the advantage of being especially simple, easy to compute, and for the special class of incompressible,
transversely isotropic materials of being exact for axisymmetric loading conditions aligned with the symme-
try axis of transverse isotropy (see, e.g., Agoras et al. [2]), which in the case of the skeletal muscle coincides
with the direction of the fibers. However, for shear and in-plane normal loading conditions, the Voigt esti-
mate is expected to be inaccurate, especially with increasing heterogeneity contrast between the properties
of the constituents, due to its lack of adequate description of the underlying microstructure other than the
volume fractions of the constituents. In order to overcome this shortcoming, in the present paper we make
use of more sophisticated homogenization techniques which, in principle, deliver better estimates for the
entire muscle’s response under general loading conditions and a wide range of muscle fiber-ECM contrasts.

In addition to constitutive modeling, there are also very few studies presenting finite element (FE)
modeling approaches considering skeletal muscle’s microstructure. In particular, Ceelen et al. [5] developed
a FE model of a transverse cross-section of skeletal muscle microstructure in order to study the deformation-
induced hypoxic damage of muscle cells. Also, Sharafi and Blemker [48] created FE unit cells from histological
cross-sections of rabbit muscles in order to derive the macroscopic along-fiber shear modulus of the skeletal
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muscle tissue by following a computational micromechanics approach. Further, Virgilio et al. [62] developed
FE models of random skeletal muscle fascicle cross-sections based on an agent-based modeling framework
in order to derive tissue-level mechanical properties upon disease-related microstructural changes. More
recently, Marcucci et al. [35] used a histological-based FE model of a skeletal muscle fiber bundle composed
of slow-and fast-twitch fibers to predict the bundle’s effective force-velocity behavior.

The above discussion indicates that microstructure-based analytical or numerical modeling approaches for
skeletal muscles are very limited in the literature. Further development of more sophisticated microstructure-
based constitutive models that describe accurately the mechanical behavior of skeletal muscles is needed in
order to be able to analyze 3D anatomical muscle structures while shedding light on how the macroscopic
response of the skeletal muscle is affected by its micromechanical and microstructural properties. Also, more
efficient methodologies in the context of computational micromechanics are required to be developed, in
which the effective behavior of a muscle tissue could be obtained by FE analysis of a representative volume
element (RVE) of its microstructure. Such developments become increasingly important for the better
understanding of both healthy and diseased muscles’ functional characteristics considering their significant
structural variations among different subjects.

m
0

Figure 2: Schematic representation of the proposed multiscale modeling framework for skeletal muscles based on analytical
and numerical homogenization. The unit vector along the muscle fiber direction in the undeformed configuration m0 is normal
to the plane of the microstructural cross sections.

Towards this direction and by extending the previous work of Spyrou et al. [54], we propose, in this
work, a novel multiscale modeling strategy for skeletal muscle structures based on analytical and numerical
homogenization methods (Fig. 2). This strategy consists of two main tasks. The first task involves the
development of an analytical homogenization constitutive model for the macroscopic response of skeletal
muscle along with an algorithm for its numerical implementation in a general purpose finite element program.
The second task considers a computational micromechanics methodology, which is used on one hand to obtain
the effective mechanical behavior of various muscles numerically via FE simulations, and on the other hand
to assess the accuracy of the analytical model. Inspired by histological cross-sections of skeletal muscle (see
for instance Fig. 2b), the muscle structure can be numerically approximated by eroded Voronoi unit cells
(see for instance Fig. 2c), where the Voronoi cells (i.e. polygons) represent the muscle fibers and the space
between the cells represents the connective tissue surrounding the fibers.

More specifically, in Section 2 an analytical homogenization model for skeletal muscles that takes into
account their microstructural characteristics (i.e., volume fractions, material properties, and spatial distri-
bution of constituents) is introduced. Subsequently, Section 3 presents in detail a numerical homogenization

3



model based on eroded Voronoi tessellations. The results of the study and the main features of the two
models are presented and discussed in Section 4. In particular, the analytical model parameters are identi-
fied using experimental data from the literature and then comparisons are carried out among the analytical
model predictions and the numerical model estimates under the full range of 3D loading conditions, a wide
range of muscle fiber volume fractions (FVF from 60% to 90%), and a wide range of heterogeneity con-
trast between muscle fibers and intramuscular connective tissue (shear modulus contrast from 5 to 50).
Finally, to show the usefulness of such models in the context of macroscale muscle geometries, the analytical
model is applied on idealized fusiform and pennate muscle structures in order to examine qualitatively their
mechanical response upon microstructural changes.

Standard notation is used throughout. Boldface symbols denote tensors the orders of which are indicated
by the context. The usual summation convention is used for repeated Latin indices of tensor components
with respect to a fixed Cartesian coordinate system with base vectors e (i = 1, 2, 3). The prefaces “det” and
“tr” indicate the determinant and trace respectively, a superscript T the transpose, and a superposed dot
the material time derivative. Let a, b, c, d be vectors, A, B second-order tensors, and C, D fourth-order
tensors; the following products are used in the text: (ab)ij = ai bj , (abcd)ijkl = ai bj ck dl, (a·A)i = aj Aji,
(A · a)i = Aij aj , (a ·A · a)ij = aiAij aj , (aA · a)ij = aiAjk ak, (a ·Aa)ij = ak Aki aj , A ·B = Aik Bkj ,
A : B = Aij Bij , (A : C)ij = Akl Cklij , (C : A)ij = CijklAkl, and (C : D)ijkl = CijpqDpqkl

2. Analytical homogenization model

Skeletal muscles may be viewed as composite materials consisting of muscle fibers embedded in a matrix
of intramuscular connective tissue (endomysium, perimysium, and epimysium). The hierarchical nature of a
skeletal muscle’s structure makes it possible to employ a three-scale homogenization scheme for the develop-
ment of a microstructure-based tissue-level constitutive model. The first scale includes the homogenization
of a muscle fascicle’s behavior considering the individual properties of muscle fibers and endomysium. The
second scale includes the homogenization of the whole muscle’s behavior (epimysium not included) taking
into account the individual properties of perimysium and muscle fascicles as resulted from the first scale.
Finally, the contribution of the epimysial connective tissue on the whole muscle macroscopic behavior can
be taken into account in a third scale homogenization model. However, in this work, due to non-availability
of enough distinct microstructural data (i.e. mechanical properties, morphological characteristics, volume
fractions) separately associated with endomysium, perimysium, and epimysium, we choose to lump the ma-
terial properties of these three types of connective tissue, collectively consider them as one single structure
named extracellular matrix (ECM), and make use of a single-scale homogenization framework as depicted
in Fig. 2.

Thus, we model skeletal muscle as a two-phase composite material made out of a large number of
homogeneous muscle fibers (phase 1), surrounded by and perfectly bonded to a homogeneous ECM (phase
2). The fibers are further assumed to be aligned along a given direction m0 in the undeformed configuration
and distributed in the transverse plane. The details concerning the constitutive relations characterizing the
material behavior of the constituent phases are given in subsection 2.1, while the homogenization procedure
used to obtain the macroscopic or homogenized behavior of the composite skeletal muscle is discussed in
subsection 2.2.

2.1. Constitutive relations for the phases

A muscle fiber is composed of a bundle of many myofibrils arranged in parallel and embedded in a matrix
of sarcoplasm. In the same sense, ECM is composed of networks of collagen fibers embedded in a matrix of
proteoglycans; these collagen networks show generally preferred orientations (with respect to the long axis
of the muscle fibers) which change with changing muscle length [42, 43]. Therefore, and following earlier
work [e.g. 48, 49, 62, 54], we model the ECM and the muscle fibers as two different, nearly incompressible,
transversely isotropic solids, characterized by the same symmetry axis m0 in the undeformed configuration.
In particular, we assume that the total true stress tensor σ(r) at any given material point X in the continuum

4



may be written as the sum of an isotropic part σ
(r)
i and an anisotropic part σ

(r)
a :

σ(r) = σ
(r)
i + σ(r)

a , (1)

where the superscript r = 1 when X is in the fiber phase and r = 2 when X is in the ECM phase. This
decomposition is a constitutive assumption [17] that is able to deliver simple but also very accurate results by

comparison with available experiments (as discussed later in Fig.7). The anisotropic part σ
(r)
a of the stress

tensor in (1) is associated with the fibrous part of the constituents and represents the stress response in the

muscle fiber direction. In turn, σ
(r)
i is associated with the non-fibrous part of the constituents and mainly

represents the response under shear loading and transverse normal straining with respect to the material’s
preferred direction. In particular, as regards to the ECM, the isotropic part is associated with the behavior
of the matrix of proteoglycans whereas the anisotropic part considers the mechanical contribution of the
collagen fibers. As regards to the muscle fiber, the anisotropic part describes the behavior of the fiber’s
contractile structure whereas the isotropic part is associated with the contribution of all the rest membrane
structures and biofluids contained in a muscle fiber.

We assume in the present study that the isotropic part can be fairly well described by a simple nonlinear

energy density. Subsequently, we provide specific constitutive equations for σ
(r)
i and σ

(r)
a .

The isotropic part of the stress σ
(r)
i in (1) is assumed to be of the hyperelastic form

σ
(r)
i =

2

J
F
∂W (r)

∂C
F T , (2)

where F stands for the deformation gradient at point X, J = detF , C = F TF is the right Cauchy-Green
deformation tensor and W (r) is the associated stored energy function of phase r. It is common practice to
describe the isotropic behavior of soft biological tissues [e.g. 17] by use of Neo-Hookean models, such as

W (r)(F ) =
G(r)

2

(
I1 − 3

)
+
K(r)

2
(J − 1)

2
. (3)

Here, I1 = J−2/3I1, with I1 = trC, while the constants G(r) and K(r) are respectively the shear and bulk
moduli of phase r. Making use of expression (3) in (2), it can be easily shown that

σ
(r)
i =

G(r)

J

(
B − 1

3
tr
(
B
)
δ

)
+K(r) (J − 1) δ, (4)

where B = J−2/3B, with B = FF T denoting the left Cauchy-Green deformation tensor, and δ is the
second-order identity tensor. Note that, incompressible Neo-Hookean behavior corresponds to the limiting
case K(r) −→ ∞, along with the constraint J = 1, in (3) and (4). In the present study, we retain a very
small compressible part but consider that K(r) � G(r) (r = 1, 2). This approximation does not alter the
final results and is convenient for the numerical implementation of the presented models.

The anisotropic part of the stress σ
(r)
a in (1) is assumed to be of the form [52]

σ(r)
a = σ(r) mm, m =

1

|F ·m0|
F ·m0. (5)

In this expression, m is the unit vector along the transversely isotropic symmetry axis in the deformed

configuration, whereas σ(r) is the current axial stress, and is given in terms of the reference axial stress σ
(r)
0

by [54]

σ(r) = σ
(r)
0 λm, (6)

with λm denoting the axial stretch ratio in the muscle fiber direction. We note that σ
(r)
0 is not a constant

and is different for the muscle fibers (r = 1) and the ECM (r = 2) as detailed in the following subsections.
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2.1.1. Anisotropic stress σ
(1)
0 for the muscle fibers

Muscle fibers exhibit both “active” and “passive” mechanical characteristics. We consider that the
nominal longitudinal stress in a muscle fiber can be written as the sum of an active and a passive part, such
that

σ
(1)
0 = σ

(1,act)
0 + σ

(1,pas)
0 . (7)

The active behavior is known to depend on the fiber length and velocity of contraction as well as on the
activation level of the muscle, whereas the passive behavior depends mainly on the fiber length. From
a “continuum” point of view, this means that the muscle fiber stress depends on the local stretch ratio,
stretch-rate, and activation level. Following Van Leeuwen and Kier [59], we write

σ
(1,act)
0 = σmaxfa fe(λm)fr(λ̇m), σ

(1,pas)
0 = f (1)p (λm), (8)

where σmax is the maximum isometric stress that appears at optimal fiber length, fa is the activation function

that controls the magnitude of σ
(1,act)
0 , fe describes the dependence of the active stress on the axial stretch

λm, fr is the function that relates the active muscle stress to the axial stretch rate λ̇m, and f
(1)
p describes

the dependence of the passive stress on the axial stretch λm. In the above equation functions (fa, fe, fr) are
dimensionless and normalized so that

0 ≤ fa ≤ 1, max
λm

fe(λm) = 1, fr(0) = 1. (9)

The active function fe is described by a normalized Weibull distribution with two parameters λmin
m and

λoptm as proposed in Ehret et al. [10]

fe(λm) =


λmin
m − λm

λmin
m − λoptm

exp

[(
2λmin

m − λm − λoptm

)
(λm − λoptm )

2
(
λmin
m − λoptm

)2
]

if λm > λmin
m ,

0 otherwise

(10)

where λmin
m denotes the minimum fiber stretch at which muscle fiber begins to generate force, and λoptm is

the optimal fiber stretch, i.e. the fiber stretch at which muscle fiber reaches optimal length and thus the
maximum force is generated [3, 65].

The well-known hyperbolic function fr is used to describe the stretch rate dependence on the muscle
fiber stress [4, 59]

fr(λ̇m) =



d− (d− 1)
1 + t∗

1− kcket∗
if t∗ < 0,

1− t∗

1 + kct∗
if 0 ≤ t∗ ≤ 1

0 if t∗ > 1

(11)

where t∗ = λ̇m

/
λ̇min
m , λ̇min

m < 0 is the minimum stretch rate, and kc, ke, d are dimensionless material

constants with kc, ke > 0 and d > 1, which guarantee that fr is positive with a positive slope in the range
of application, i.e. t∗ ≤ 1.

Recent experimental data have shown a linear stress-strain passive behavior of single muscle fibers [37, 50],

thus the muscle fiber passive stress-strain relation f
(1)
p can be described by a linear function of fiber stretch

ratio as

f (1)p (λm) =

{
Ep (λm − λoptm ) if λm > λoptm ,

0 otherwise
(12)
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Figure 3: (a) A flattened schematic representation of a helical ECM fibril surrounding a cylindrical muscle fiber before and
after imposing a stretch in the muscle fiber direction. (b) Relationship between the muscle fiber stretch and the angle θ between
the collagen helix and the muscle fiber.

where Ep denotes the muscle fiber’s passive elastic modulus. It is noted that, in general, a linear behavior is
experimentally observed for sarcomere lengths above 2.5 µm [50]. At lower sarcomere lengths the behavior
may present a short nonlinear “toe region” [45], however most fibers are generating tension beyond that
region, thus a toe region has not been included in Eq. (12).

The various constants in the previous expressions are defined by use of experimental data in Section 4.1.

2.1.2. Anisotropic stress σ
(2)
0 for the ECM

The ECM’s collagenous fiber network develops only “passive” stresses and, in accord with experimental
studies, microscopically possesses a preferred orientation around 55− 60 degrees with respect to the muscle
fiber direction [42, 43] at muscle’s rest length. Following Purslow [42], we assume that the ECM’s fiber
network represents a helical fiber distribution with a preferred angle wrapped around incompressible cylin-
drical muscle fibers and that these collagen fibril helices are constrained to deform with the muscle fibers
so that the stretch of a collagen helix λH can be expressed in terms of the stretch of a muscle fiber λm and
the collagen fibril angle with respect to the muscle fiber at rest length θ0 as

λH =
√
N ·C ·N =

H

H0
=

√
λm

2cos2θ0 +
1

λm
sin2θ0, λm =

√
m0 ·C ·m0. (13)

Here, in correspondence with Fig. 3a, N denotes the unit vector in the direction of a collagen fibril in the

reference configuration, and H0 =
√
L0

2 + C0
2, H =

√
L2 + C2 denote the length of the collagen helix in

the undeformed and deformed configuration respectively. In the last expressions, C0 = 2πR0 and C = 2πR
denote the circumference of a muscle fiber of radius (R0, R) and length (L0, L) before and after imposing
a stretch in the muscle fiber direction respectively. One can also derive a relation connecting the applied
stretch λm and the angle θ between the collagen helix and the muscle fiber in the deformed configuration,
such that

tan θ =
C

L
=

tan θ0

λm
√
λm

. (14)

Note that, in (14) use has been made of the incompressibility constraint πR0
2L0 = πR2L. An illustration

of the aforementioned relationship is depicted in Fig. 3b for an initial angle θ0 = 59◦; the resulting strain-
induced reorientation behavior of an ECM collagen fiber is consistent with the experimental measurements
of Purslow [42] and Purslow and Trotter [43].

In turn, the total nominal fiber stress of ECM can be written as a function of the stretch in the muscle
fiber direction and the declination angle between the collagen fibrils and the muscle fiber

σ
(2)
0 = f (2)p (λH) = f (2)p (λm, θ0). (15)
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An exponential function f
(2)
p is adopted here to describe the mechanical behavior of the collagenous

connective tissue [17]

f (2)p (λH) =

{
A1
(
eA2(λH−1) − 1

)
if λH > 1,

0 otherwise.
(16)

Here, A1 and A2 are material coefficients. In deriving the last equation, we have taken into account that
the fibrous parts of the muscle’s constituents do not support passive compressive loads (see e.g. Holzapfel
and Ogden [19])

2.2. Analytical homogenization estimates for the macroscopic behavior

In this section, we combine the response of the ECM and muscle fiber constituents in an effort to propose
an analytical “approximate” mathematical model for the effective macroscopic response of the ensemble.
The goal is to obtain a simple but accurate model that can be easily implemented in a user material routine
for larger scale simulations of real muscle geometries (see diagram in Fig. 2).

Let us consider, then, a representative volume element (RVE) of a composite skeletal muscle material,
as defined above, which in the undeformed configuration occupies a region V0 with boundary ∂V0, and let

V
(1)
0 and V

(2)
0 be the complementary parts of V0 occupied by muscle fibers (phase 1) and ECM (phase 2),

respectively. Then, the volume fractions of the muscle fibers and the ECM in the RVE are

|V0(1)|
|V0|

≡ c ≡ FVF,
|V0(2)|
|V0|

≡ 1− c, (17)

respectively. The particular shape of ∂V0 is not important in the present context since we consider that the
size of the RVE is much larger than the size of the heterogeneity, i.e., the diameter of a typical fiber.

The homogenization problem for the composite material of interest may be defined by means of affine
boundary conditions [15, 41]

x(t) = F̂ (t)X ∀ X ∈ ∂V0, (18)

where X and x(t) denote the position vectors of any given material point on the boundary of the body in the

undeformed and deformed (at time t) configuration, respectively, while F̂ (t) is a deformation gradient tensor

which may vary with time t, but is independent of X, i.e., F̂ (t) is constant for given t. Note that, due to
the almost incompressible response of the material, the volume fractions of the phases (17) are independent
of the deformation of the body. Letting F (X, t) be the (unknown) deformation gradient field produced in
the RVE under the boundary conditions (18), one can easily show that

F̂ (t) =
1

|V0|

∫
V0

F (X, t)dX, (19)

i.e., the average of F (X, t) over the RVE reference volume V0 is equal to the applied deformation gradient

F̂ (t). For convenience and latter reference, we also introduce at this point the notation

σ̂(t) =
1

|V |

∫
V

σ(x, t)dx, (20)

for the average of the corresponding (unknown) true stress field σ(x, t) over the region V occupied by the
body in the deformed (at time t) configuration.

The macroscopic or homogenized behavior of the skeletal muscle may then be defined by the relation
between the average stress σ̂(t) and the history of the average deformation of the RVE, as prescribed by

the deformation gradient F̂ (t).
Guided by the decomposition (1) for σ(r) and in order to derive a tractable analytical but also accurate

model, we propose an approximate decoupled homogenization strategy. This consists in writing the macro-
scopic average Cauchy (Eulerian) stress σ̂(t) as a sum of a stress resulting from the homogenization of the
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constituents’ isotropic behavior σ̂i(t) and a stress resulting from the homogenization of the constituents’
anisotropic behavior σ̂a(t), i.e.,

σ̂(t) = σ̂i(t) + σ̂a(t). (21)

In this regard and based on a previous work [54] where the Voigt approximation was used to estimate
the homogenized behavior of the skeletal muscle and taking into account that the Voigt estimate is exact
for axisymmetric loading conditions aligned with the direction of the muscle fibers, the anisotropic stress
σ̂a(t) in (21) is given by

σ̂a(t) = σ̂(t) m̂(t) m̂(t), m̂(t) =
1∣∣∣F̂ (t) ·m0

∣∣∣ F̂ (t) ·m0, σ̂(t) = σ̂0(t) λ̂m(t), (22)

where we recall that m0 is the unit vector along the transversely isotropic symmetry axis in the undeformed
configuration, λ̂m(t) denotes the stretch ratio induced by F̂ (t) along the direction m0, and

σ̂0(t) = c σ
(1)
0

(
λ̂m(t),

˙̂
λm(t)

)
+ (1− c) σ(2)

0

(
λ̂m(t)

)
(23)

is the effective reference axial stress of the composite. Note that, in the above expression (23) the phase

response functions σ
(r)
0 , with r = 1, 2, defined in the previous subsection, are evaluated at λ̂m(t) and

˙̂
λm(t).

Again, the mapping of the reference vector m0 to F̂ (t) ·m0 in the deformed configuration, constitutes a
rigorous result of homogenization [33] implying that long fibers behave as macroscopic material line elements.
This result, in turn, supports the assumption adopted in phenomenological theories to treat fibers as material
line elements that deform in an affine manner.

In turn, the isotropic part requires a more elaborate homogenization approach. Specifically, deBotton
[7], deBotton et al. [8] and Lopez-Pamies and Idiart [32] have made use of solutions for isotropic coated (or
high-rank) laminates made of hyperelastic constituents. Those estimates have been used recently by López
J́ımenez [30] in the context of iterated homogenization methods (see for instance Lopez-Pamies [31] for
nonlinear hyperelastic composites) to produce estimates for two-phase hyperelastic composites comprising
fibers of circular cross-section. Those estimates were assessed by numerical RVE calculations of random
dispersion of fibers and were found to give a very good agreement up to volume fractions of c = 50%. In
the present work, the proposed microstructures exhibit two main differences; (i) the fiber volume fraction
is extremely high ranging from c = 60% to at least 95% and (ii) the fiber cross-section is not circular but
polygonal (see Fig. 2). Even so, the overall response is almost isotropic in the plane and as we will see
the model of Lopez-Pamies (see López J́ımenez [30]) in an otherwise different context delivers extremely
accurate estimates. It is perhaps relevant to note here that in a large number of studies the response of
the muscle is considered isotropic in the transverse plane of the fibers. As we will see later, this requires
a sufficiently large volume to attain representativity and isotropy. On the other hand, in several numerical
studies (see for instance Sharafi and Blemker [48]) the use of a direct experimentally-obtained image can
lead to anisotropic in-plane response mainly due to the relatively small size of the volume considered and
consequently its strong dependence upon the applied boundary conditions. These issues are considered and
discussed in detail henceforth, especially in the numerical model of the following section.

Specifically, following closely López J́ımenez [30], the effective stored-energy function depends on
(
Î1, Î4, Î5, Ĵ

)
and reads as follows

ŴIH =

GIH
2

(
Î1 − 3

)
+
Gn −GIH

2

 2√
Î4

− 3

+
Gn −GHS

2
Î4 −

GIH −GHS
2

Î5

Î4

+
K̂

2

(
Ĵ − 1

)2
, (24)
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where

Î1 = Ĵ−2/3 Î1 = Ĵ−2/3 trĈ = Ĵ−2/3 tr(F̂
T
· F̂ ), (25)

Î4 = m0 · Ĉ ·m0 = λ̂2m, (26)

Î5 = m0 · Ĉ
2
·m0, (27)

GIH = (1− c)2
(

1 +
2 (2− c) c
(1− c)2

G(1)

G(2)
+
G(1)2

G(2)2

)
G(2)

2
−

− (1− c)2G
(1) −G(2)

2

√√√√ 2

(1− c)2
G(1)

G(2)
+

(
1 +

2 (2− c) c
(1− c)2

G(1)

G(2)
+
G(1)2

G(2)2

)
, (28)

Gn = cG(1) + (1− c)G(2), (29)

GHS =
(1− c)G(2) + (1 + c)G(1)

(1 + c)G(2) + (1− c)G(1)
G(2), (30)

K̂ = c K(1) + (1− c) K(2). (31)

The proposed model in the present study differs from that of López J́ımenez [30] only in terms of the

augmented with Ĵ invariant Î1 = Ĵ−2/3Î1 and the compressibility part involving the effective bulk modulus
K̂. The latter is introduced by simple use of a Voigt homogenization and constitutes an approximation. The
dependence upon Ĵ can be readily dropped to deal with exact incompressibility in the limit of K(1),K(2) −→
∞ or equivalently K̂ −→∞, since the model in (24) has been originally defined in that limit. Nevertheless,
for convenience in the numerical implementation in our present study, we use this term to avoid introducing
the pressure as an additional Lagrange multiplier and use of non-standard finite element formulations. We
make sure however that K(r) � G(r) (r = 1, 2) for both constituents.

The stress σ̂i(t) in relation (21) is then given by

σ̂i(t) =
2

Ĵ
F̂
∂ŴIH

∂Ĉ
F̂
T

= K̂
(
Ĵ − 1

)
δ +

GIH

Ĵ

(
B̂ − 1

3
Î1δ

)

+
1

Ĵ

GIH −Gn√
Î4

+
(GIH −GHS) Î5

Î4
+ Î4 (Gn −GHS)

 m̂ m̂− GIH −GHS
Ĵ

(
m̂ B̂ · m̂ + m̂ · B̂ m̂

)
(32)

where Ĵ = det F̂ (t), B̂(t) = Ĵ−2/3B̂(t), with B̂(t) = F̂ (t)F̂
T

(t).
The constitutive model developed in this section has been implemented in the ABAQUS general-purpose

finite element program [1]. ABAQUS provides a general interface so that a particular constitutive model
can be introduced as a “user subroutine” (UMAT). A detailed description of the numerical implementation
of the mathematical model is provided in the Appendix A.

3. Numerical homogenization model

In this section we present a numerical homogenization approach using a sufficiently complex three dimen-
sional periodic unit cell. Inspired by skeletal muscle histological cross-sections (see for e.g. [49]) a muscle
structure may be numerically approximated by eroded Voronoi unit-cells. The purpose of this numerical
homogenization framework is twofold. First, the numerical results will serve as a test bed to assess the an-
alytical estimates presented in the previous section. Second, the unit cells offer flexibility in the estimation
of the homogenized response of the composites since they allow (a) for microstructural variability as well as
(b) for the use of other constitutive descriptions of the constituents of increased complexity.

Previous studies have attempted to model the complex distribution and cross-sectional shape of the
muscle fibers using anatomical [48, 49], non-periodic geometrically random [62], or hexagonal unit-cells
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[54]. Complementary to those studies we propose, in this study, a virtual unit cell that has the following
properties:

• the unit cell is by construction periodic, [38, 54],

• the cross section of the fibers is polygonal while the fibers themselves are surrounded by finite-thickness
ECM zones and distributed randomly allowing to easily reach extremely high volume fractions up to
100%,

• the unit cell contains a sufficiently large number of fibers to ensure isotropy and representativity in
the plane normal to the fiber direction,

• the unit cell allows for a good meshing strategy and in general very good mesh quality, which is
necessary for the large strain calculations carried out in this study,

• assuming that the composite is invariant along the fiber direction, only one element is used along this
direction, thus reducing the cost of the numerical simulations, while allowing for any three dimensional
loading condition that produces homogeneous stress and strain fields along the fiber direction of the
tissue. This assumption can be easily dropped by assuming a finite fiber length and non-periodic
boundary conditions along the fiber direction if required.

(b)(a) (c)

70% FVF 80% FVF 90% FVF

y

x

z

60% FVF

(d)
m0

Figure 4: Periodic Voronoi unit-cell FE meshes with (a) 60% FVF, (b) 70% FVF, (c) 80% FVF, and (d) 90% FVF. Fibers
and ECM are shown in red and blue colour respectively. The initial fiber direction m0 is taken along the global z-axis.

More specifically, Fig. 4 shows representative FE meshes of the unit cell for c ≡ FVF = (60%, 70%, 80%, 90%)
used in the calculations. The resulting FVF depends on the ECM thickness, which is taken as constant
across the whole volume of each unit cell in the undeformed configuration (Table 1).

Table 1: Thickness of the ECM material for a given FVF. Each Voronoi cell is subjected to an offset that is half the reported
thickness. For each value of the thickness, six realizations were generated: the relative standard deviation of the FVF was in
all cases of the order of 0.3 %.

FVF ECM Thickness

60% 11.2µm
70% 8µm
80% 5.2µm
90% 2.5µm
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A total of six realizations for each FVF (see three of them in Fig. 5) were considered sufficient to ensure
the statistical representativity of the unit cell due to very low relative standard deviations (RSD) of the
FVF (maximum RSD of the order of 0.3%) and the average stress for a given value of the strain (maximum
RSD of the order of 8%). Thus, in the comparisons with the analytical solution (21) that follow in the next
section, all presented FE results correspond to the average of six realizations.

y

x

m0

Figure 5: Six realizations for each FVF were analyzed. For illustration purposes we show three out of the six realizations
corresponding to 90% FVF. The unit vector along the muscle fiber direction in the undeformed configuration m0 is normal to
the x-y plane of the microstructural cross sections.

The finite element calculations are carried out in Abaqus under quasi-static conditions and finite strains.
The constitutive models described in Section 2.1 are used to describe the behavior of the constituents. The
size of the unit-cell was taken as 350µm × 350µm. Eight-node hexahedral hybrid elements (C3D8H in
ABAQUS) with a constant pressure stress interpolation are utilized in order to handle efficiently the nearly
incompressible behavior of the muscle fibers and ECM. Also, it is assumed that bonding between fibers and
ECM is perfect so that a rigid mesh connection between the constituents is applied. A preliminary analysis
showed that the behavior of the unit-cell is insensitive to the number of elements used through the out-of-
plane direction (fiber direction), thus one element thick meshes are used in the current analysis. In the plane
normal to the fiber direction a very fine discretization is used and a minimum number of four elements is
inserted through the ECM thickness in all the FVF cases to accurately capture the stress and strain fields
developed therein. Mesh sensitivity studies revealed that meshes with approximately (3, 5, 10, 39) × 104

elements for a unit-cell with 60%, 70%, 80%, 90% FVF, respectively (such as the meshes shown in Fig. 4)
produce converged and accurate results.

3.1. Generation of unit cells

Direct observation of histological cross-sections of skeletal muscle (Fig. 1) suggests that the cells of a
Voronoi tessellation are a suitable model of muscle fibers. Such geometries are frequently used to perform
full-field simulations on polycrystalline microstructures [23]. Special treatement is needed in the present
study in order to account for the ECM material that surrounds each individual fiber, as shown in Fig. 6.

First, a random sequential addition algorithm [57] is used to place N = 50 seeds in the 350µm × 350µm
unit-cell. Setting the minimum distance between seeds to 10µm ensures that the resulting Voronoi cells are
not too small. In order to enforce periodicity, each seed is replicated in the eight neighboring ghost-cells
(see Fig. 6a). Owing to the relatively small number of seeds, this fairly simple approach followed for the
periodization of the Voronoi tessellations is found to be sufficient [see more efficient approaches in e.g. 64]
for the purposes of the present work.
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Figure 6: Generation of unit-cells. Seeds are first placed randomly (a), taking into account a minimum center-to-center
distance (see shaded disks) through a simple RSA algorithm. The Voronoi tessellation is then generated (b), and the location
of the center of the unit-cell is optimized (initial location: orange, optimized location: green). Then, an offset is applied to all
Voronoi cells (c). Finally, the microstructure is clipped to the boundaries of the unit-cell (d).

The Qhull library1 is then used through its Python/SciPy wrapper2 to compute the Voronoi tessellation
of the resulting set of 9N seeds (see Fig. 6b). All subsequent geometric operations are carried out through
the Python/Shapely library3. Vertices that fall too close to the boundary of the unit-cell might affect
locally the quality of the generated mesh. To improve on this and taking advantage of the periodicity of
the generated microstructure, a translation is subsequently applied to the center of the unit cell in order to
maximize the vertex-to-boundary minimum distance (see Fig. 6b).

A constant, negative parallel offset is then applied to each Voronoi cell [63]. This effectively generates
constant thickness areas surrounding the Voronoi cells, which represent the ECM material (see Fig. 6c).
It should be noted that only the mean value of the FVF is controlled through the value of the offset (see
Table 1).

Finally, the various polygonal domains generated are clipped at the boundaries of the unit-cell (see
Fig. 6d), and the resulting microstructure is passed to Gmsh4 for mesh generation [12].

3.2. Periodic boundary conditions

The application of periodic boundary conditions is necessary in order to be able to extract a homogenized
response out of the numerical unit cell. These conditions directly imply that the proposed unit cell can be
infinitely repeated in the three directions to provide a representative muscle structure, whereby requiring
only the solution of a reduced unit cell to estimate the homogenized response. A detailed description of
the implementation of periodic boundary conditions in a finite element setting can be found elsewhere
[34, 36, 54]. Here, for completeness, we mention that the periodic boundary conditions are expressed as

u =
(
F̂ − δ

)
·X + u∗ (33)

where the second-order tensor F̂ denotes the average deformation gradient of the unit-cell which is equal to
the applied deformation gradient [38, 21], X denotes the spatial coordinates in the reference configuration,
δ is the second-order identity tensor, and u∗ is a periodic displacement field.

1http://www.qhull.org/, last retrieved 2018-01-23.
2https://docs.scipy.org/doc/scipy/reference/tutorial/spatial.html, last retrieved 2018-01-23.
3https://pypi.org/project/Shapely/, last retrieved 2018-01-23.
4http://gmsh.info/, last retrieved 2018-01-23.
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The volume average true stress tensor in the unit-cell σ̂ is calculated as σ̂ =
∑
i

σiVi

/∑
i

Vi where

σi and Vi are the true stress tensor evaluated at the centroid and the volume of the i-th finite element
respectively. The volume average nominal (1st Piola-Kirchhoff) stress tensor t̂ is then computed by the

relation t̂ = Ĵ F̂
−1
· σ̂. Here, Ĵ = det F̂ , where F̂ corresponds to the average deformation gradient in the

unit cell and has been defined via the periodic boundary conditions in Eq. (33). All loadings are characterized

by the macroscopic applied average deformation gradient F̂ .
For the problem of uniaxial tension in direction i the deformation gradient is of the form

F̂ = λ̂ ei ei + λ̂t (ej ej + ek ek) , ∀i, j, k = 1, 2, 3 and i 6= j 6= k (34)

where
(
λ̂, λ̂t

)
are the average axial and transverse stretch ratios and (ei, ej , ek) are the base vectors along

the coordinate axes shown in Fig. 4. It is noted that λ̂t is not directly applied but is a result of imposing
a zero average transverse true stress. This is simply achieved by letting the lateral master nodes free (see
Mbiakop et al. [36] for more details on applying a fixed stress triaxiality load).

For the problem of simple shear, we completely set the deformation gradient to be of the form

F̂ = δ + γ̂ ei ej , ∀i, j = 1, 2, 3 and i 6= j, (35)

where γ̂ is the average amount of shear on the i− j plane.

4. Results and discussion

In this section, first we make use of experimental results available in the literature to identify the
analytical model parameters and then we compare the predictions of the analytical homogenization model
for the skeletal muscle developed in section 2 with the FE results of the numerical homogenization model
discussed in section 3 for the full range of 3D loadings. In particular, we examine the influence of FVF (c)
and shear moduli contrast on the effective muscle response in the muscle fiber direction. Next, we examine
whether the analytical model is able to capture the muscle response under normal (in-plane) and shear
loadings.

(a) (b)

Figure 7: Analytical homogenization model comparison with the experimental data of (a) Hawkins and Bey [13] under uniaxial
loading in the muscle fiber direction, and (b) Morrow et al. [40] under longitudinal tension, transverse tension, and longitudinal
shear.
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4.1. Identification of the model parameters

In order to identify the model parameters, the analytical homogenization model is compared to the
experimental data of Hawkins and Bey [13], who measured the passive and active force-length response
of a normal rat tibialis anterior muscle. During those active force-length tests the muscle was stimulated
isometrically (constant muscle length), thus the normalized force-velocity function that enters in Eq. (8)
is set to unity (fr(λ̇m) = 1) implying no dependency of the velocity (stretch rate) of contraction on the
active stress. Due to the small pennation angle of the rat’s tibialis anterior muscle fibers we assume that
the experimental loading direction coincides with the muscle fiber direction [10]. The value for the fiber
volume fraction c (≡FVF) that appears in Eq. (23) is set to c = 95% according to Lieber et al. [28] data
for normal muscles. The value for σmax that enters Eq. (8), as well as the values for λoptm and λmin

m that
enter the active stress-stretch function fe in Eq. (10) are directly determined from the stress-stretch curve
of Hawkins and Bey [13] as σmax = 73 kPa, λoptm = 1.192, and λmin

m = 0.682. Furthermore, the muscle

fiber’s passive elastic modulus Ep that enters the passive stress-strain function f
(1)
p is set to Ep = 63 kPa

based on the single fiber experimental results of Thacker et al. [55] on rat tibialis anterior muscles. Also,
we assume fully active muscle fibers (fa = 1) when the activity of the muscle is taken into account and
fa = 0 when muscle exhibits only passive behavior. The values of the rest model parameters A1, A2 and

θ0 that enter the function f
(2)
p in Eq. (16) and the shear moduli of the muscle’s constituents G(1), G(2) are

assigned as G(1) = 2.5 kPa, G(2) = 1 kPa, A1 = 53 kPa, A2 = 110, and θ0 = 59◦ in order to achieve a good
agreement with the experimental data as shown in Fig. 7a, taking into account that the shear moduli of
the muscle’s constituents are in the order of few kPa [60]. Finally, we assign the corresponding bulk moduli
to be 10,000 times the shear moduli in order to account for the incompressible behavior of the constituents(
K(r) = 104G(r), r = 1, 2

)
.

In addition, the analytical homogenization model is compared to the experimental measurements of
Morrow et al. [40], who tested extensor digitorum longus rabbit muscles under tension in the muscle fiber
direction (longitudinal tension), tension in a direction transverse to the muscle fiber direction, and longi-
tudinal shear along the muscle fiber direction. By adjusting the model parameters to be G(1) = 15 kPa,
G(2) = 5 kPa, Ep = 100 kPa, λoptm = 1, A1 = 170 kPa, A2 = 12, θ0 = 25◦, and keeping c = 0.95, Fig. 7b
shows that the analytical model is able to probe accurately the experimentally measured muscle response
under all the three distinct loading modes.

4.2. Assessment of the analytical homogenization model by comparison with the numerical model

In this section we assess the accuracy of the analytical homogenization muscle model for different volume
fractions of the constituents by comparing its predictions to the results of the numerical homogenization
model. Since experimental measurements for the shear moduli of the constituents themselves do not currently
exist in the literature we examine skeletal muscle response over a wide range of shear modulus contrast
between muscle fiber and ECM G(1)

/
G(2) = 5, 10, 20, 50, with G(2) = 1 kPa. The remaining values of the

model parameters are those that match the experimental data of Hawkins and Bey [13] as reported in the
previous section. It is also important to note at this point that in the current literature, there exist - to the
best of our knowledge - no experiments that investigate the effect of muscle fiber volume fraction upon the
overall muscle response. As a consequence, in the following sections, we assess the accuracy of the analytical
homogenization model by comparison with the corresponding numerical model. That is a highly non trivial
assessment since the nonlinearities exhibited by the muscle phases are strong and the volume fractions of
the fibers very high.

4.2.1. Fiber direction response

For loadings in the muscle fiber direction the deformation gradient field that is developed in the RVE is
uniform and as a consequence the developed stress fields are constant-per-phase. Therefore, the proposed
analytical homogenization model reduces to the homogenization model of the Voigt type as presented in
Spyrou et al. [54], and thus the two models produce the same exact estimates for that type of loading
conditions. It is noted here again that for incompressible transversely isotropic skeletal muscles the Voigt
estimate is exact for axisymmetric loading conditions aligned with the muscle fiber direction, i.e. the
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Figure 8: Muscle response under loadings in the muscle fiber direction. Analytical model predictions compared to FE unit-cell
simulations for (a) FVF = 60% and various shear moduli contrasts G(1)/G(2), (b) FVF = 90% and various shear moduli
contrasts G(1)/G(2), (c) G(1)/G(2) = 20 and various FVF, and (d) G(1)/G(2) = 50 and various FVF. The shear modulus
of ECM is taken as G(2) = 1 kPa. The same agreement between analytical and numerical results is also achieved for the
intermediate FVFs = 70%, 80%.

symmetry axis of transverse isotropy in skeletal muscles. For the sake of completeness, in Fig. 8 we present
the comparison between the analytical model predictions and the FE unit-cell calculations, which shows
excellent agreement. In all cases considered the predicted total muscle response is consistent with the
experimentally observed trend shown in Fig. 7a.

As already shown in Spyrou et al. [54] for that particular loading case, at large enough tensile stretching
in the fiber direction, the muscle response may become much stiffer with the increase of the ECM volume
fraction, whereby a cross-over of the total response occurs (Figs. 8c and 8d). In particular, at low stretch
levels, the response is dominated by the isotropic behavior of the constituents, thus the higher FVF leads
to higher stresses when G(1)/G(2) > 0. At higher stretches (∼> 30%) this response is reversed, i.e. the
anisotropic (fibrous) part of the constituents dominates the whole response. Therefore, by increasing the
volume fraction of ECM and stretching levels, more and more collagen fibers become aligned with the muscle
fiber direction, thus causing the exponential increase of muscle’s stiffness due to their high nonlinear behavior.
Interestingly, such a cross-over has been previously observed experimentally in Smith et al. [50], where the
passive response of fiber bundles including ECM was compared between normal and spastic muscles; the
spastic muscles had a significantly higher collagen content than the normal muscles. The increased muscle
stiffness of spastic muscles when stretched in the fiber direction due to their higher content in ECM compared
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with the healthy subjects was also observed in that study. In addition, our findings probe successfully the
experimental results of Meyer and Lieber [37], who revealed the primary contribution of ECM on muscle’s
stiffness and highly nonlinear response under tensile loading in the muscle fiber direction.

On the other hand, only a large enough shear moduli contrast between muscle fibers and ECM (e.g.
G(1)

/
G(2) > 20) can have a significant effect on the total anisotropic tissue response, as shown in Figures 8a

and 8b. For example, the minimum fiber stretch at which muscle begins to develop positive total stresses is
increased from ∼ 0.72 to ∼ 0.83 when the contrast of the shear moduli ratio is increased from G(1)

/
G(2) = 20

to G(1)
/
G(2) = 50. However, for λ̂ < 1 the total response is dominated by the active behavior of the muscle

fibers and directly attributed to the muscle fiber’s normalized active stretch-dependent behavior described
by the fe function in Eq. (10).

(a) (b)

(c) (d)

Figure 9: In-plane tensile behavior for various shear moduli contrasts when (a) FVF = 90%, (b) FVF = 80%, (c) FVF = 70%,
and (d) FVF = 60%.

4.2.2. In-plane normal response

The muscle’s in-plane normal response is associated with the combined isotropic (Neo-Hookean) behavior
of its constituents. Due to the isotropy in the plane normal to the fiber direction, the material response is
the same under either F̂xx or F̂yy loading (see Figures 4 and 5 for the loading axes). Fig. 9 shows a very
good agreement between the analytical and numerical results for most of the cases analysed. The deviation
between the aforementioned results increases with decreasing FVF and increasing G(1)/G(2) contrast. The
maximum difference between the average stresses for a given value of the stretch is about 20% and corre-
sponds to a material with FVF = 60% and G(1)/G(2) = 50 when subjected to about 15% stretch. As can be
observed in Fig. 9, due to problems with the numerical convergence, the numerical calculations are stopped
at lower overall stretch levels as the FVF and G(1)/G(2) are increased. This typically occurs whenever the
elements in the ECM regions become exceedingly distorted because of the high local strains developed.

Fig. 10 presents two examples of large local deformations in ECM regions for the case of FVF = 90%
and G(1)/G(2) = 50 under in-plane tension (Fig. 10a) and in-plane shear (Fig. 10b). Fig. 10a shows contour

plots of the maximum principal logarithmic strain at an overall stretch level of λ̂ = 0.1 whereas Fig. 10b
shows the same contour plots at an overall shear strain level of γ̂ = 0.15. In both cases the deformation
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(a) (b)

m0

Figure 10: Contour plots of the maximum principal logarithmic strain for a realization with FVF = 90% and G(1)/G(2) = 50

subjected to an overall (a) in-plane tensile stretch of λ̂ = 0.1, and (b) in-plane shear strain of γ̂ = 0.15. In both cases the initial
undeformed configuration is also depicted for comparison purposes. The initial fiber direction m0 is taken along the global
z-axis.

contours are seen to be highly heterogeneous in the ECM with principal logarithmic strains as large as 2.07
in the case of in-plane tension and 2.27 in the case of in-plane shear.

4.2.3. Shear response

During physical function muscle may be deformed under three distinct shearing modes: a) shear in

the direction of the fibers (out-of-plane longitudinal shear) by applying F̂zx or F̂zy, b) shear in the planes

normal to the fibers (in-plane shear) by applying F̂xy or F̂yx, and c) shear across the fibers (out-of-plane

perpendicular shear) by applying F̂xz or F̂yz (Fig. 11). It is noted that analytical and FE unit-cell calculations

result in the same muscle response under either F̂xz or F̂yz loading, under either F̂xy or F̂yx loading, and

under either F̂zx or F̂zy loading.

(a)

undeformed deformed undeformed deformed undeformed deformed

(b) (c)

Figure 11: Schematic representation of (a) out-of-plane longitudinal shear, (b) in-plane shear, (c) out-of-plane perpendicular
shear. In (a) and (c) the dark lines represent the fibers whereas in (b) the dark polygons denote the cross sections of fibers out
of the plane of the page ([9]).

Fig. 12 shows an excellent agreement between the analytical estimates and the numerical calculations of
muscle response under perpendicular shear. The results show that muscle fibers control the overall muscle
response when shear strains are maintained under a certain threshold (' 0.7− 0.8 in the present case); this
threshold depends on the orientation of the ECMs collagen fibers with respect to the muscle fiber direction.
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(a) (b)

(c) (d)

Figure 12: Out-of-plane perpendicular shear behavior for various shear moduli contrasts when (a) FVF = 90%, (b) FVF
= 80%, (c) FVF = 70%, and (d) FVF = 60%.

Above this threshold the ECMs collagen fibers are properly oriented in order to become stretched enough
and contribute significantly to the overall muscle response. With further increase of perpendicular shearing
the effective response becomes increasingly stiffer due to the domination of the ECMs high nonlinear tensile
behavior in the fiber direction as explained in Section 4.2.

Note that, for transversely isotropic materials, the out-of-plane perpendicular shear is the only mode of
simple shear which causes stretching in the direction of transverse isotropy (fiber stretching), thus resulting
in the negative or reverse Poynting effect as described in Destrade et al. [9]. As a consequence of this simple
shear deformation mode the sheared faces of the material tend to meet each other causing the development of
a tensile normal stress in the direction perpendicular to the applied shear deformation (see also the relevant
discussion in Spyrou et al. [54]).

A very good agreement is also achieved under in-plane shear (Fig. 13) and out-of-plane longitudinal
shear (Fig. 14) loadings for most of the cases analyzed. As in the in-plane normal response, the devia-
tion between the analytical and numerical results increases with decreasing FVF and increasing contrast
G(1)/G(2). The maximum difference between the average stresses for a given value of the stretch is about
15% and corresponds to in-plane shear muscle response with FVF = 60% and G(1)/G(2) = 50.
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(a) (b)

(c) (d)

Figure 13: In-plane shear behavior for various shear moduli contrasts when (a) FVF = 90%, (b) FVF = 80%, (c) FVF = 70%,
and (d) FVF = 60%.

(a) (b)

(c) (d)

Figure 14: Out-of-plane longitudinal shear behavior for various shear moduli contrasts when (a) FVF = 90%, (b) FVF = 80%,
(c) FVF = 70%, and (d) FVF = 60%.
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(a) (b)

(c) (d)

Figure 15: Muscle response as predicted by the present model and the model of Spyrou et al. [54] for FVF = 60% and
G(1)/G(2) = 20 under (a) in-plane tension, (b) longitudinal shear, (c) in-plane shear, and (d) perpendicular shear.

4.3. Comparison of the present analytical homogenization model with the analytical model of Spyrou et al.
[54]

In this section we focus on the differences of the proposed analytical model with the previous homoge-
nization model of the Voigt type of Spyrou et al. [54]. As already discussed in Section 4.2.1 the two models
produce the same estimates under loadings in the muscle fiber direction. However, this is not the case for
shear or in-plane normal loading conditions. Under these loadings the model of Spyrou et al. [54] produces
inaccurate estimates, especially with the increase of the heterogeneity contrast of the constituents and the
decrease of the FVF. By contrast, the present model shows remarkable predictive qualities, as shown in
Figures 15 and 16. The closest agreement between the two models is observed for the perpendicular shear
loading case because it involves fiber stretching which seems to have a major contribution on the overall
behavior of the tissue.

4.4. Mechanical response of 3D muscle macro-structures

In the previous sections the analytical model for skeletal muscle has been assessed through experimental
and extensive FE simulations for various loading conditions and several fiber volume fractions (FVF). This
section presents an application of the analytical homogenization muscle model on idealized geometries of
fusiform and pennate muscles in order to examine qualitatively their mechanical response when subjected
to microstructural changes. The objective of this section is to show that the analytical multiscale muscle
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(a) (b)

(c) (d)

Figure 16: Muscle response as predicted by the present model and the model of Spyrou et al. [54] for FVF = 90% and
G(1)/G(2) = 20 under (a) in-plane tension, (b) longitudinal shear, (c) in-plane shear, and (d) perpendicular shear.

model presented in Section 2 can be actually employed to perform simulations of 3D organ-level muscle
geometries using the numerical implementation scheme proposed in this paper.

The fusiform muscle is modeled using an axisymmetric geometry (Fig. 17a) where the local orientations
of the fibers in the undeformed configuration (i.e. the unit vectors m0 in Eq. 22) are determined by
interpolation between the corresponding directions of the fiber on the axis of symmetry and the outermost
fibers on the free surface of the muscle (see also Spyrou [51]). The fusiform muscle is subjected to tensile
loading under active (0 < fa ≤ 1) or passive (fa = 0) conditions. In particular, the one muscle end is fixed,
whereas at the other end a uniform displacement is applied and the corresponding axial reaction force is
determined.

On the other hand, the pennate muscle is modeled using a simple parallelepiped geometry (Fig. 18a)
where the muscle fibers are oriented at an angle of 45 deg relative to the vertical z-axis. The pennate muscle
is analyzed under perpendicular shear loading conditions while being active (0 < fa ≤ 1) or passive (fa = 0).
This is achieved by fixing the one muscle end, applying at the other end a uniform horizontal displacement
in the x-direction as shown in Fig. 18a, and calculating the corresponding horizontal reaction force.

The finite element calculations are carried out in Abaqus using eight-node hexahedral hybrid elements,
quasi-static conditions, and finite strains. The local directions of the muscle fibers are defined as initial
conditions at all Gauss integration points in terms of the local unit vectors m0. When the activity of the
muscle is taken into account the activation function fa increases linearly from 0 to 1 over a time period of 1s
while the whole load is applied over the same time period. In both applications the multiscale constitutive
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Total
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Figure 17: (a) FE mesh and boundary conditions of an idealized fusiform muscle geometry. The initial muscle length is 220
mm and the cross sectional diameters at the ends of the muscle and at the middle of the muscle belly are 36 mm and 80 mm
respectively. (b) Average stress/stretch total and passive muscle response under axial tensile loading for FVF = 90% and FVF
= 60%.

(a) (b)

Total

Passive
m0

Figure 18: (a) FE mesh and boundary conditions of an idealized pennate muscle geometry. The initial muscle height, width,
and depth are 200 mm, 200 mm, and 60 mm respectively. (b) Average stress/strain total and passive muscle response under
perpendicular shear loading conditions for FVF = 90% and FVF = 60%.

model presented in Section 2 is used to describe the mechanical behavior of muscle tissues. We assume
that FVF in the muscles is either 60% denoting a pathologic case or 90% indicating a healthy tissue. Also,
the shear moduli contrast between muscle fibers and ECM is taken as G(1)/G(2) = 10. The values for the
parameters λ̇min

m , kc, ke, d that enter the active stress-strain rate function fr in Eq. (11) are taken from Böl
and Reese [4] as λ̇min

m = −17 s−1, kc = 5, ke = 5, d = 1.5. The remaining values of the model parameters
used in this analysis are the same with those used in Section 4.2.

Figure 17b shows the average nominal normal stress/stretch response for the fusiform muscle and Fig-
ure 18b shows the average nominal shear stress/strain response for the pennate muscle. In both cases, the
average nominal stress is found by dividing the calculated reaction force with the surface area at which
the corresponding displacement has been imposed. For the fusiform muscle, the average axial stretch λ is
defined as the ratio between the final and the initial muscle lengths. For the pennate muscle, the average
nominal strain γ is defined as the ratio between the applied horizontal displacement and the initial vertical
muscle height.

The fusiform muscle response follows the trend of the corresponding response under loading in the muscle
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fiber direction presented in Fig. 8. In particular, when muscle remains passive (fa = 0) the higher FVF
leads to higher stresses at lower stretches, whereas at higher stretches a cross-over of the response occurs due
to the increased load-bearing capacity of the ECM. On the other hand, when muscle activity is taken into
account (fa > 0) the response is dominated by the behavior of the muscle fibers for λ ≤ 1.3. Accordingly, a
similar trend can be observed for the pennate muscle response, i.e. the overall muscle response is controlled
by the muscle fibers when shear strains are maintained under a certain threshold (' 0.5− 0.6 in this case)
whereas above this threshold the effective response becomes dominated by ECM’s behavior.

5. Concluding remarks

In this work, we have developed analytical and numerical homogenization-based models that may be
used to describe the mechanical behavior of skeletal muscles at finite strains subjected to three-dimensional
loading conditions. The analytical model incorporates muscle’s microstructural characteristics including
volume fractions, material properties, and spatial distribution of its constituents, namely muscle fibers
and ECM. In order to achieve this goal an approximate decoupled homogenization scheme has been used
to bridge the different length scales of the muscle structure. Specifically, the analytical model considers
that the effective isotropic and anisotropic parts resulting from the corresponding isotropic and anisotropic
response of the constituents can be decoupled. This allows to first homogenize the anisotropic response of
the muscle using an exact Voigt homogenization scheme. In turn, for the isotropic part, we use a recently
developed model for two-phase fiber reinforced composites by López J́ımenez [30] and extend it in the
context of muscle fibers embedded in an extracellular matrix (ECM). The two contributions are then added
in the current configuration and are shown to deliver very accurate estimates when compared with the
numerical homogenization model which is resolved via full field finite element (FE) simulations. To the
best knowledge of the authors, this is the first analytical micromechanics-based model in the literature
which is able to describe fairly accurately the mechanical behavior of skeletal muscles upon the full range
of three-dimensional loadings for a wide range of different compositions and material properties.

In addition, a numerical homogenization model based on eroded Voronoi tesselations has been developed
in order to perform virtual tests using computational micromechanics techniques. This framework allowed
the calculation of the effective properties of an idealized composite muscle by analyzing numerically the
mechanical response of a unit cell (i.e. a representative volume element-RVE) of the microstructure under
various loading conditions. In this paper, motivated by optical image observations of the muscle fiber-
ECM microstructure, an approach based on eroded Voronoi tesselation models, where the Voronoi polygons
represent the muscle fibers and the finite thickness regions surrounding the polygons represent the ECM,
was chosen as a suitable and in the same time efficient way to represent realistically skeletal muscle’s
microstructural cross sections.

The analytical model parameters were identified using experimental data from the literature whereas the
full field finite element calculations of the periodic Voronoi unit cells were used to assess the accuracy of the
analytical homogenized muscle model presented in this study. At first, the analytical model is shown to be
able to probe accurately (by proper identification of the material parameters) the experimentally measured
muscle response under different loading conditions. Secondly, the analytical model is assessed by comparison
with the full field numerical results and is found to be extremely accurate for a wide range of fiber volume
fractions (FVF from 60% to 90%), different material contrasts (shear modulus contrast G(1)/G(2) = 5−50),
and the full range of loading conditions. Since significant microstructural variations may occur among
healthy and diseased muscle tissues, it is important that a reliable constitutive model for muscle tissue can
describe muscle behavior accurately within a vast range of FVF, loading conditions, and different material
properties of the constituents.

As opposed to phenomenological modeling, the proposed microstructural modeling approach takes into
account explicitly the dependence of the macroscopic response of the muscle upon the underlying microstruc-
tural arrangement, micro-deformation mechanisms, and material properties of its constituents. The de-
veloped models allow to explain the relation between muscle microstructure and macroscopic mechanical
properties, as well as to make predictions about muscle behavior upon microstructural changes. Since physi-
ological muscular diseases may cause significant microstructural changes, such models can become important
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in better understanding muscle function and the fundamental role of mechanics under such conditions. For
example, the model is able to explain analytically the experimentally observed significant role of intramus-
cular connective tissue in the increased muscle stiffness of a spastic muscle, as discussed in Section 4.2. Such
observations may lead to new therapeutic treatments for skeletal muscle disease-related dysfunctions.

In the context of the finite element method, the proposed analytical muscle model has been numeri-
cally implemented in a very efficient user-material subroutine which, in turn, allows for the simulation of
three-dimensional muscle geometries of any complexity. This is critical for biological muscular systems since
it provides the opportunity to investigate physiological- or disease-related problems in a multiscale frame-
work via computer simulations in real time. In this paper, for illustration purposes, the model has been
applied successfully to simulate the mechanical response of idealized fusiform and pennate muscle structures
under different microstructural conditions. In particular, the effect of different muscle composition on the
macroscopic mechanical response of muscles of different type has been examined.

In this study the ECM’s behavior was considered as transversely isotropic with all collagen fibrils aligned
in one direction. Although endomysium (and perimysium) show preferred orientations with respect to the
muscle fiber direction (see Section 2.1.2), normally these connective tissues contain networks of fibers whose
orientations are dispersed around that preferred orientations. Thus, for a more realistic material description,
the model for ECM can be substituted by any other model that takes into account its internal microstructure,
i.e., the presence of a fibril network at a much smaller length scale than that of the muscle fiber itself, and
consider the dispersion of the collagen fibrils around a mean (preferred) orientation θ with respect to the
muscle fiber direction m0 by following either the so-called “angular integration” method originated by Lanir
[25] or the “generalized structure tensor” approach formulated by Gasser et al. [11].

In closing, it should be remarked that both the numerical and the analytical models proposed in this
work involve the assumption that the muscle-fiber and ECM phases are initially perfectly bonded and remain
perfectly bonded throughout any given loading. The computational micromechanics framework presented
in this work could be a perfect means to investigate numerically the effect of imperfect phase bonding, as
may occur due to local damage of the transmembrane connections of the phases, by modifying appropriately
the rigid FE mesh connections between muscle constituents [e.g. 62]. This aspect will be examined in a
future work. Also, the model used at the local scale for the muscle fiber constituent do not account for
several features, such as different fiber types (fast- or slow-twitch), grouping of fibers in motor units, fiber
recruitment, muscle fatigue, and muscle residual force enhancement [6]. Such features could be readily
included in the current version of the homogenization model by appropriate modifications of equation (8).
The addition of such features in the muscle fiber constituent model will be considered in a future work.
An additional study that would be of interest and is not carried out here is the cyclic response of muscles
and the resulting dissipation [44, 39, 61]. Such an analysis would have been straightforward in the present
numerical setting by taking into account the viscoelastic characteristics of the constituents’ passive behavior.
Finally, the present study strongly suggests that the muscle fiber volume fraction plays a critical role upon
the overall muscle response and further experiments in that direction could prove very useful to address
those effects in a more quantitative manner.
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Appendix A. Numerical implementation of the analytical model

In this appendix we describe the numerical implementation of the analytical constitutive model in the
context of the finite element method. In view of the non-linearity and the rate dependence of the model,
the finite element solution is developed incrementally. The constitutive calculations are carried out at the
element Gauss integration points. In particular, at a given Gauss point, the directional vector in the reference
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configuration m0, the homogenized solution (F̂ n, σ̂n, λ̂m|n at time tn as well as the average deformation

gradient F̂ n+1 at time tn+1 = tn + ∆t are known, and the problem is to determine (σ̂n+1, λ̂m|n+1, m̂n+1).
The constitutive calculations at the Gauss points are carried out in the following order:

Ĵn+1 = det F̂ n+1, (36)

F̂ n+1 =
(
Ĵn+1

)−1/3

F̂ n+1, (37)

B̂n+1 = F̂ n+1 · F̂
T

n+1, (38)

B̂n+1 = F̂ n+1 · F̂
T

n+1, (39)

Ĉn+1 = F̂
T

n+1 · F̂ n+1, (40)

Î1|n+1 = tr
(
B̂n+1

)
, (41)

Î4|n+1 = m0 · Ĉn+1 ·m0, (42)

Î5|n+1 = m0 · Ĉ
2

n+1 ·m0, (43)

m̂n+1 =
1

|F̂ n+1 ·m0|
F̂ n+1 ·m0, (44)

λ̂m|n+1 =

√
m0 · Ĉn+1 ·m0, (45)

˙̂
λm|n+1 =

λ̂m|n+1 − λ̂m|n
∆t

, (46)

K̂ = c ·K(1) + (1− c) ·K(2), (47)

GIH = (1− c)2
(

1 +
2 (2− c) c
(1− c)2

G(1)

G(2)
+
G(1)2

G(2)2

)
G(2)

2
−

− (1− c)2G
(1) −G(2)

2

√√√√ 2

(1− c)2
G(1)

G(2)
+

(
1 +

2 (2− c) c
(1− c)2

G(1)

G(2)
+
G(1)2

G(2)2

)
, (48)

Gn = cG(1) + (1− c)G(2), (49)

GHS =
(1− c)G(2) + (1 + c)G(1)

(1 + c)G(2) + (1− c)G(1)
G(2), (50)
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σ̂i|n+1 = K̂
(
Ĵn+1 − 1

)
δ +

GIH

Ĵn+1

(
B̂n+1 −

1

3
Î1δ

)

+
1

Ĵn+1

GIH −Gn√
Î4|n+1

+
(GIH −GHS) Î5|n+1

Î4|n+1

+ Î4|n+1 (Gn −GHS)

 m̂n+1 m̂n+1

− GIH −GHS
Ĵn+1

(
m̂n+1 B̂n+1 · m̂n+1 + m̂n+1 · B̂n+1 m̂n+1

)
(51)

σ
(1)
0 |n+1 = σmaxfa|n+1fe(λ̂m|n+1)fr(

˙̂
λm|n+1) + fp

(1)(λ̂m|n+1), (52)

σ
(2)
0 |n+1 = f (2)p (λ̂m|n+1, θ0), (53)

σ̂0|n+1 = c · σ(1)
0 |n+1 + (1− c) · σ(2)

0 |n+1, (54)

σ̂n+1 = λ̂m|n+1 σ̂0|n+1, (55)

σ̂a|n+1 = σ̂n+1 m̂n+1 m̂n+1, (56)

σ̂|n+1 = σ̂i|n+1 + σ̂a|n+1. (57)

The “implicit” version of ABAQUS is used, in which the finite element formulation is based on the weak
form of the equilibrium equations, the solution is carried out incrementally, and the discretized nonlinear
equations are solved by using Newton’s method. The Jacobian of the equilibrium Newton-loop requires the
so-called “linearization moduli” of the algorithm that handles the constitutive equations; these moduli are
defined in terms of a fourth-order tensor Ĉ that relates the variation of stress to the variation of strain over
the increment. Because the Jaumann objective stress rate is used in the “implicit” version of ABAQUS for
continuum elements, in order to determine the fourth-order tensor Ĉ we need to define a relationship of the
form

O
σ̂ = Ĉ : D̂ =

(
Ĉ
i
+ Ĉ

a
)

: D̂. (58)

where
O
σ̂ = ˙̂σ − Ŵ · σ̂ − σ̂ · Ŵ

T
is the Jaumann rate of the average Cauchy stress tensor, D̂ the average

deformation rate tensor, and Ŵ the average spin tensor.

Evaluation of Ĉ
a

The details of the derivation of the anisotropic part of Ĉ which corresponds to Ĉ
a

are reported in Spyrou
[51]. Here we note that

Ĉ
a

ijkl = λ̂m (σ̂0 +D)Hijkl + σ̂ Aijkl, (59)

with

D = λ̂m

(
∂σ̂0

∂λ̂m
+

1

∆t

∂σ̂0

∂
˙̂
λm

)
, (60)

Hijkl = m̂im̂jm̂km̂l, (61)

Aijkl =
1

2
(δik m̂j + δjk m̂i) m̂l +

1

2
(δil m̂j + δjl m̂i) m̂k − 2Hijkl. (62)
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Evaluation of Ĉ
i

The effective behavior derived by the homogenization of the constituents’ isotropic behavior is charac-
terized by the stored-energy function ŴIH . The elasticity tensor in the material description C relates the
work conjugate pairs of stress and strain tensors and measures the change in stress which results from a
change in strain under consideration:

∂Ŝ = C : ∂Ê, (63)

where Ŝ is the average 2nd Piola-Kirchhoff stress tensor and Ê is the average Green-Lagrange strain tensor.

Taking into account that Ŝ can be derived from ŴIH according to Ŝ = 2∂ŴIH

/
∂Ĉ the elasticity tensor C

can be found by

C = 4
∂2ŴIH

∂Ĉ∂Ĉ
= 4

∂

∂Ĉ

(
∂ŴIH

∂Î1

∂Î1

∂Ĉ
+
∂ŴIH

∂Î4

∂Î4

∂Ĉ
+
∂ŴIH

∂Î5

∂Î5

∂Ĉ
+
∂ŴIH

∂Ĵ

∂Ĵ

∂Ĉ

)
(64)

Using (24) and (64) with the product and chain rules, we arrive at a closed-form expression for C

Cijkl = K̂ Ĵ

[(
2Ĵ − 1

)
Ĉ−1
ij Ĉ

−1
kl + 2

(
Ĵ − 1

) ∂Ĉ−1
ij

∂Ĉkl

]
+

2GIH Ĵ
−2/3

3

(
−δijĈ−1

kl − Ĉ
−1
ij δkl

)
+

2GIH Î1
3

(
−
∂Ĉ−1

ij

∂Ĉkl
+

1

3
Ĉ−1
ij Ĉ

−1
kl

)
−
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3 (GIH −Gn)

Î
5/2
4

+
4 (GIH −GHS) Î5

Î34

]
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0
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0
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Î24
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0
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0
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Î4
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Î24
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0
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Î4
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(65)

where
∂Ĉ−1

ij

∂Ĉkl
= − 1

2

(
Ĉ−1
ik Ĉ

−1
jl + Ĉ−1

il Ĉ
−1
jk

)
and Iijkl = 1

2 (δikδjl + δilδjk).

The spatial representation of (63) can be shown to be (e.g. [16])

˙̂τ − L̂ · τ̂ − τ̂ · L̂
T

= Ĵ C̃ : D̂ (66)

where τ̂ = Ĵσ̂ is the average Kirchhoff stress tensor, L̂ = D̂ + Ŵ is the average velocity gradient with D̂

the average deformation rate tensor and Ŵ the average spin tensor, and C̃ is the spatial description of the
elasticity tensor defined as the push-forward operation of C times a factor of Ĵ−1

C̃ijkl =
1

Ĵ
F̂iI F̂jJ F̂kK F̂lLCIJKL (67)

Using (65) and (67) a closed-form expression for C̃ijkl with index notation reads

C̃ijkl = K̂
(

2Ĵ − 1
)
δijδkl − K̂

(
Ĵ − 1

)
(δikδjl + δilδjk)−2GIH

3Ĵ

(
B̂ijδkl + δijB̂kl

)
+

2GIH Î1

3Ĵ

(
1

2
(δikδjl + δilδjk) +

1

3
δijδkl

)
− 1

Ĵ

[
3 (GIH −Gn)

Î
1/2
4

+
4 (GIH −GHS) Î5

Î4

]
m̂i m̂j m̂k m̂l

+
2

Ĵ
(GIH −GHS) m̂i m̂j m̂t B̂tk m̂l −

2

Ĵ
(GIH −GHS)

[
−m̂i B̂jt m̂t m̂k m̂l +

1

2

(
m̂i B̂jk m̂l + m̂i B̂jl m̂k

)]
− 2

Ĵ
(GIH −GHS)

[
−m̂t B̂ti m̂j m̂k m̂l +

1

2

(
m̂k B̂il m̂j + m̂l B̂ik m̂j

)]
+

2

Ĵ
(GIH −GHS) m̂i m̂jm̂k B̂lt m̂t.

(68)
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By substituting L̂ = D̂ + Ŵ in Eq.(66) we arrive at an expression of the form

O
σ̂i = Ĉ

i
: D̂ (69)

where

Ĉ
i

ijkl = C̃ijkl +
1

2
(δik σ̂jl + σ̂ikδjl + δil σ̂jk + σ̂ilδjk) (70)

A closed-form expression for Ĉ
i

ijkl reads
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Î4
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2Ĵ
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+
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Î4
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− 2

Ĵ
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+
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−m̂i B̂jt m̂t m̂k m̂l +

1
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m̂i B̂jk m̂l + m̂i B̂jl m̂k

)]
(71)

In equations 59 and 71 all quantities are evaluated at the end of the increment under consideration, i.e.,
at t = tn+1. It is noted that the fourth-order tensor Ĉ has both the “minor” and “major” symmetries, i.e.,

Ĉijkl = Ĉjikl = Ĉijlk = Ĉklij . (72)
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