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A B S T R A C T

The present study deals with a numerical design strategy of a novel class of three-dimensional random Voronoi-
type geometries, called M-Voronoi. These materials comprise random, non-quadratic convex void shapes and
non-uniform intervoid ligament thicknesses, and can span high-to-low relative densities. The starting point for
their generation is a random adsorption algorithm (RSA) construction with spherical voids embedded in an
incompressible, nonlinear elastic matrix phase. The initial RSA geometry is subjected to large elastic volume
changes by prescribing Dirichlet boundary conditions. Due to the incompressibility of the matrix phase, the
externally imposed volume changes lead to significant void growth. The numerical growth process may be
stopped at any desired porosity. The proposed M-Voronoi process is general and allows the formation of
isotropic (or anisotropic) designs. As a byproduct of the developed approach, we also present a novel remeshing
technique allowing to read arbitrary geometries of one or multiple phases. The elasto-plastic properties of the
M-Voronoi porous materials are numerically investigated at small strains as well as large compressive and
shear loads. Their response is assessed by comparison with other well-known random and periodic porous
geometries such as polydisperse porous materials with spherical voids (RSA), classical TPMS Gyroid geometries
and random Spinodoid topologies. The results show that M-Voronoi and RSA (with spherical voids) geometries
exhibit the stiffest elastic and highest flow stress response compared to the other two geometries. This study
shows unambiguously that randomness may or may not lead to enhanced mechanical response such as higher
stiffness or flow stress.
1. Introduction

Cellular solids can have a wide range of small-scale topological
architecture, ranging from the nearly perfect order seen in honeycombs
to the disordered, three-dimensional networks found in sponges and
foams. The characteristics of porous materials can be classified in a
variety of ways. Starting from purely topological characteristics, they
can be classified into periodic or random. Periodic cellular materials
have been studied since the 1950s (or perhaps for centuries), with
extensive experimental and theoretical investigations on the influence
of the primitive cell geometry. In those studies, it has become crystal
clear that instabilities appear almost always, leading to deformation
localization as well as short or long wavelength buckling of the lig-
aments (Papka and Kyriakides, 1998; Combescure et al., 2016, 2020;
Balit et al., 2021; Dong et al., 2015; Andrew et al., 2021; Luan et al.,
2022). These instabilities may be further exacerbated when using 3D
printing fabrication techniques due to imperfections inherent in the
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printing process. Imperfections can significantly degrade the elastic
moduli and subsequent nonlinear behavior of these lattices, leading
to experimental responses that deviate significantly from the original
design and numerical predictions (Symons and Fleck, 2008; Fu and Xie,
2012). Additionally, periodic cellular materials exhibit in most cases
direction-dependent mechanical properties and inherent orthotropy or
anisotropy at finite strains (even if some of them may be isotropic
in small elastic strains), which can be problematic, especially when
structures are subjected to unknown loading conditions. Finally, their
periodicity may be problematic since it may be non-conformal with the
macroscopic geometry of the structure that needs to be designed.

While regular periodic patterns are common in periodic geometries,
Triply Periodic Minimal Surface (TPMS) structures derived from the
minimum surface condition with zero mean curvature exhibit more
intricate and complex periodic features. TPMS structures originated
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from the study of Schoen (1970) and Schwarz (1972) are designed
by use of very simple mathematical expressions and can reach fairly
low densities (Soyarslan et al., 2019). They are promising candidates
for multifunctional material design due to their smooth curvature
and potential for functionally graded structures. Moreover, the TPMS-
like shell-lattice structures are stronger and more stable than most
of periodic structures including octet trusses. However, their inherent
cubic symmetry can be a limitation when exposed to multi-directional
loading (Bonatti and Mohr, 2019) or more complex structures need to
be created with such materials.

In contrast to periodic cellular materials, natural porous materials
and biological tissues commonly comprise random topology (Gaita-
naros et al., 2012). Even materials often considered periodic, like
bee honeycombs, exhibit irregularities, with varying void sizes and
shapes, potentially leading to gradient porosity and mechanical prop-
erties (Ashby and Gibson, 1997). The complexity of structural topol-
ogy in random cellular materials makes their geometry realization
very challenging (Su and Jang, 2022). Several structural models have
been developed by replacing the actual random topology with those
that have simpler periodic or random geometries. However, these
approaches have limitations. First, they lack microstructural charac-
teristics such as random cell size, shape, orientation, and position.
Secondly, they often lead to instabilities and direction-dependent prop-
erties, which make their response far from that of a random geometry
(see Warren and Kraynik (1997) for liquid foams, and Simone and
Gibson (1998) for metal foams). A popular method for numerically
constructing random foams involves tomography scanning of actual
microstructures, producing precise random geometries. This technique
relies on X-ray computed tomography scans to characterize these mi-
crostructures (Amani et al., 2018; Ghazi et al., 2020; Wang et al., 2021)
and thus requires repeated scanning for numerical analysis, which is
extremely time consuming.

Many studies have explored methods for generating random ge-
ometries. A classic approach involves microstructures with randomly
distributed spherical voids created using random sequential adsorp-
tion (RSA) or random closed packing (RCP) methods (Lubachevsky
et al., 1991; Torquato, 2002). Modifications to the RSA algorithm
have expanded its versatility. Segurado and Llorca (2002) adjusted the
algorithm to produce RSA geometries with periodic unit-cell bound-
aries while maintaining minimal void distances. Pierard et al. (2007)
extended it to generate random monodisperse ellipsoidal inclusions.
Lopez-Pamies et al. (2013) proposed a modification for constructing
polydisperse microstructures with various particle sizes. Anoukou et al.
(2018) presented a comprehensive RSA algorithm encompassing all
these features, using an iterative numerical approach to determine min-
imum inclusion distances. It is essential to note that non-overlapping
RSA geometries have limitations in terms of inclusion volume fractions
(or porosity). Due to the irreversible nature of the sequential process,
achieving high volume fractions while avoiding overlap is challenging.
An even greater challenge arises if the inclusions are monodisperse. In
this case, the maximum volume fraction approximately corresponds to
0.38 and 0.55 for 3D and 2D RSA, respectively (Feder, 1980; Cooper,
1988). To surpass these limits, either one starts with small volume
fractions and grows the sphere sizes (see for instance Lubachevsky and
Stillinger 1990 and de Francqueville et al. 2019) to reach monodis-
perse closely packed microstructures of larger volume fraction ∼0.64 or
nstead use polydisperse distributions with smaller inclusions to reach
ven higher volume fractions. Even then, achieving inclusion/void con-
entrations beyond 0.8 in 3D and 0.9 in 2D remains highly challenging
nd demands an extremely large number of inclusions (in the order
f tens of thousands) of very different sizes. Manufacturing considera-
ions may also play a role if one decides to manufacture such porous
aterials, as the minimum inclusion distance is dictated by 3D printing

ccuracy (Zerhouni et al., 2019). This constraint leads to a substantial
mall-to-large void size ratio (Tarantino et al., 2019), resulting in
2

ignificant polydispersity at high inclusion volume fractions, which p
is simply non-realizable with current 3D-printing technology nor is
possible to simulate such geometries, especially at finite strains at a
finite time scale.

Another type of random porous geometries includes Voronoi tessel-
lations generated using the Laguerre-Voronoi diagram algorithm (We-
jrzanowski et al., 2013), which divides space into polyhedral cells with
constant but non-zero thickness and variable length (Spyrou et al.,
2019). Voronoi geometries are commonly used in simulating poly-
crystalline microstructures or foams (Gaitanaros and Kyriakides, 2015;
Gahlen and Stommel, 2022; Gong and Kyriakides, 2005). However,
when considering porous Voronoi geometries, it is essential to note
their limitations, namely, the absence of variable cell wall thickness and
smooth corners. These limitations render Voronoi tessellation geome-
tries susceptible to localized deformation at finite strain loading and
lead to deformation modes similar to periodic ones (Hooshmand-Ahoor
et al., 2022), especially at higher relative densities >0.1.

Spinodoid topology is another type of random geometries intro-
uced recently by Soyarslan et al. (2018), Hsieh et al. (2019) and Ku-
ar et al. (2020). These geometries are obtained through specific

pinodal phase separation by Gaussian random fields (GRF) and can
e connected to the solution of the famous Cahn–Hilliard diffusion
roblem (Geslin et al., 2019). Spinodoid or in general Gaussian-type
opologies exhibit a non-optimal mechanical response (Roberts and
arboczi, 2001; Zerhouni et al., 2021) when compared with available
athematical bounds in linear elasticity. Moreover, they cover a lim-

ted density span ranging approximately between 0.7 and 0.2 (Maskery
t al., 2017), unless spinodoid shell models are employed. In the latter
ase, the interface between the solid and void phases is assumed to be a
olid shell (Hsieh et al., 2019). Despite of these drawbacks, their simple
athematical construction offers the versatility of tailored isotropic and

nisotropic responses through inverse design processes (Kumar et al.,
020).

.1. Scope of the study

The goal of the present work is twofold. The first is to propose
novel design of mechanically grown Voronoi-type materials, called
-Voronoi, with random smooth topological features involving both

oid shapes and intervoid ligament thickness. This is achieved by finite
train simulations of a unit-cell of an incompressible neo-Hookean
atrix comprising initially randomly distributed spherical voids. The

oid growth is triggered by applying volume increase Dirichlet bound-
ry conditions on the outer boundary of the unit-cell. The second
oal is to analyze the M-Voronoi microstructure and probe the ef-
ect of randomness on the linear and elasto-plastic properties of such
eometries numerically. To assess the M-Voronoi response, we also
nalyze three additional microstructures; polydisperse RSA with spher-
cal voids, Gyroid TPMS and Spinodoid geometries at various relative
ensities.

This paper is organized as follows. In Section 2, the general nu-
erical design process of the M-Voronoi geometries is presented in
etail including initial RSA geometry, nonlinear elastic simulations for
oid growth and remeshing of the deformed geometries. In Section 3,
e provide representative examples of isotropic M-Voronoi geometries
nd introduce briefly the other three geometries analyzed in this work,
.e., polydisperse RSA with spherical voids, Gyroid TPMS and Spin-
doids. In Section 4, we study the stiffness of the four geometries
ia small strain FE simulations. Section 5 deals with the numerical
arge strain elasto-plastic response of these geometries under uniaxial
ompression and simple shear loads. We conclude with Section 6. We
lso include appendices that describe the algorithms for remeshing and

rovide additional details on the meshing of the geometries.
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Fig. 1. Computational process for the generation of the 3D M-Voronoi material. For illustration purposes, the diagram shows the four steps required to obtain a virtual M-Voronoi
geometry starting from a cubic unit-cell containing a discrete number of mono-sized spherical voids. Step 1: Random distribution of spherical voids in a cubic domain with initial
relative density 𝜌 = 0.7. Step 2: Application of displacement boundary conditions. Step 3: Numerical FE simulation at large strains using nonlinear elastic energy minimization and
incompressible matrix behavior. The final relative density corresponds to 𝜌 = 0.3. The cut image shows the inside of the deformed geometry. The color bar indicates the maximum
principal logarithmic strain. Step 4: Remeshing and uniform re-scaling of the deformed geometry to the desired size. The final 3D M-Voronoi and its containing inclusions are
uniformly re-scaled to the size of the initial geometry.
2. M-voronoi geometry generation

In this section, we describe the computational morphogenesis of
the 3D M-Voronoi (from ‘‘Mechanically grown’’ Voronoi) geometries,
which follows a similar procedure as the one for 2D M-Voronoi geome-
tries presented in Hooshmand-Ahoor et al. (2022).

The procedure is divided into four main steps (see for a visual
description Fig. 1).

Step 1: Random generation of spherical (or ellipsoidal) voids in a
predefined volume cell (need not be unit) using the RSA
method (Torquato, 2002; Anoukou et al., 2018). The dis-
tribution may be uniform (or not), periodic (or not) and
the background cell may be cubic or of a different shape
(see examples in Hooshmand-Ahoor et al. 2022). The size of
the voids may be the same (i.e. monodisperse) or different
(i.e. polydisperse). In this study, we consider a cubic, unit-cell
containing initially monodisperse spherical voids randomly
distributed in the cell and imposing periodicity on the lateral
surfaces (although not necessary).

Step 2: Application of mechanical Dirichlet boundary conditions.
Those may be periodic (or not) depending on the final design
geometry target. In addition, one may relax further this
boundary condition by applying a combination of Dirichlet–
Neumann or only Neumann boundary conditions. The main
3

restriction is that the total volume changes imposed on the
cell must be positive, thus inducing void growth. In the
present work, we apply affine Dirichlet boundary conditions,
which implies that the deformed geometry will not be ex-
actly periodic. We note that there is no particular reason
in our study to maintain periodicity since the subsequent
simulations are not periodic.

Step 3: Numerical simulation of the initial volume cell at finite
strains and use of incompressible nonlinear elasticity for the
matrix phase. This allows to transform all imposed volume
changes via the external boundary conditions to pure void
growth. The simulation stops when one reaches the pre-
scribed final porosity or density desired. For very low density
geometries, one needs to carry out intermediate remeshing to
allow for numerical local convergence.

Step 4: Final remeshing and uniform re-scaling of the final deformed
geometry to the desired size. This allows to subsequently
analyze the final geometry numerically or experimentally by
use of 3D-printing.

Each of these steps is further detailed in the following.

Step 1: RSA generation

The proposed void growth process begins with the construction
of an initial cubic porous unit-cell. The initial void distribution and
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shape affect in general the final M-Voronoi geometry. Such a study
is beyond the scope of the present work and will be carried out
elsewhere. In this study, we focus on initially spherical voids distributed
uniformly and periodically in a unit cube. In particular, the voids are
distributed following a random adsorption algorithm (RSA) (Torquato,
2002; Segurado and Llorca, 2002; Lopez-Pamies et al., 2013) and are
taken to have the same size (i.e. monodisperse). The positions of the
void centers are obtained randomly, and are rejected if the distance to
any of the already allocated voids is less than a given limit (usually
1− 5% of the void diameter depending on the initial porosity as higher
orosity requires decreasing this distance). For a periodic geometry,
oids that lie at the edge of the unit-cell are periodically reproduced
n opposite faces of the unit-cell. This step is obviously unnecessary if
ne is interested in non-periodic geometries or the external volume cell
s not periodic (e.g. a cylinder). In order to obtain a good mesh quality,
void is rejected if the distance between its center and the edge of the
VE is in the range of 0.95–1.05% of its diameter. These conditions

ead to realizations that are fairly easy to mesh with good quality finite
lements. In this work, the geometry is imported in the open source
msh (Geuzaine and Remacle, 2009) software (https://gmsh.info) and
eshed using quadratic, ten-node, isoparametric, tetrahedral elements.
he initial porosity is user-defined and is denoted as 𝑐0 such that the

nitial density is 𝜌0 = 1 − 𝑐0. It is important to note in passing that
n principle, any void geometry may be used as a starting point for the
umerical morphogenesis. For instance, one could start with Spinodoid
eometries at small porosity (Soyarslan et al., 2018; Kumar et al., 2020;
askery et al., 2017; Portela et al., 2020), periodic ones (e.g. TPMS,

ctahedral, etc.) or other random ones (Zerhouni et al., 2021; Neumann
t al., 2020). The subsequent steps are independent of the starting
eometry.

tep 2: Dirichlet boundary conditions

We choose to work in this study with periodic geometries but affine
irichlet boundary conditions. This allows to obtain deformed cubic
eometries with plane faces that can eventually be 3D-printed and
ested. In addition, the use of Dirichlet boundary conditions allows for
impler control of the imposed volume change on the cubic unit-cell
ince it is explicitly known ab initio in this case. Specifically, let the de-

formable unit-cell occupy a volume 0 in the undeformed (Lagrangian)
configuration with boundary 𝜕0. The reference position vector of a
material point in 0 is denoted with 𝐗 ∈ 0. The deformed position
vector 𝐱(𝐗) of any material point is related to 𝐗 via 𝐱(𝐗) = 𝐗 + 𝐮(𝐗),
where 𝐮(𝐗) denotes the displacement vector of any material point. The
eformation gradient is defined then as 𝐅 = 𝜕𝐱∕𝜕𝐗 = 𝐈 + Grad𝐮, where
rad denotes the gradient operator with respect to 𝐗. We then impose

(𝐗) = (𝐅𝚊𝚙𝚙 − 𝐈)𝐗 ∀𝐗 ∈ 𝜕0. (1)

Here, the prescribed, non-symmetric, second-order tensor 𝐅𝚊𝚙𝚙 repre-
sents the average deformation gradient in the entire cell, i.e., 𝐅𝚊𝚙𝚙 =
|0|

−1 ∫0 𝐅(𝐗)d𝐗 (Hill, 1963). These boundary conditions maintain the
sides of the cube straight and as a consequence, the deformed geometry
loses its initial smooth periodicity.1

1 Use of periodic conditions is obviously possible by simply adding a
eriodic displacement field (see Michel et al. (1999) and Mbiakop et al.
2015)). This, however, would lead to wavy fluctuating deformation of the
ube sides. As we will see in the next section, our goal is to simulate a
oundary value problem that is potentially realizable via 3D-printing (see
or instance Hooshmand-Ahoor et al. (2022)) and pertains to a pragmatic
ealization of the geometry at hand. For this reason, we do not impose periodic
oundary conditions. The proposed affine boundary conditions maintain some
orm of ‘‘periodicity’’ since they impose that the cube faces remain flat
4

hroughout the process. n
Step 3: Large strain nonlinear elastic simulations

This step involves the numerical simulation of a finite-strain, nonlin-
ear elastic boundary value problem (BVP), whose geometry was defined
in Step 1 and boundary conditions in Step 2. The solid matrix phase
of the unit-cell is assumed to follow an incompressible, neo-Hookean
law described formally by the Helmholtz free energy density2

𝑊 (𝐅) = 𝜇
2
(𝐅 ⋅ 𝐅 − 3), such that 𝐶(𝐅) = det 𝐅 − 1 = 0. (2)

ere, 𝜇 denotes the shear modulus, which, for the purposes of this
tudy, may be set equal to unity, while the incompressibility constraint
(𝐅) needs to be imposed everywhere in the matrix phase. The point-
ise displacement 𝐮 and pressure 𝑝 (Lagrange multiplier associated
ith the incompressibility constraint) are then obtained by optimizing

he nonlinear elastic energy everywhere in the solid matrix phase (Fu
nd Ogden, 2001)

𝐮, 𝑝} = arg

{

min
𝐮∗∈(𝐅𝚊𝚙𝚙)

∗
max
𝑝 ∫0

𝑊 (𝐅(𝐮∗)) + 𝑝𝐶(𝐅(𝐮∗))d𝐗
}

, (3)

here (𝐅𝚊𝚙𝚙) = {𝐮 ∶ regular,𝐮 = (𝐅𝚊𝚙𝚙 − 𝐈)𝐗, ∀𝐗 ∈ 𝜕0}. The
bove BVP is then solved by the finite element (FE) method with the
ommercial software ABAQUS (Dassault Systems). For this, quadratic
0-node, three-dimensional (3D) hybrid elements (C3D10H) are used
o deal with incompressibility. The void phase has no energy density
nd is therefore left un-meshed with traction-free boundaries. Despite
he incompressibility of the solid phase, the unit-cell is porous and thus
ompressible. Therefore, by prescribing det 𝐅𝚊𝚙𝚙 > 1, the volume of the
nit-cell increases. This is readily achieved via void growth and local
hearing of the matrix phase. Given the incompressibility of the solid
hase, mass conservation and the prescribed boundary conditions, the
ollowing kinematic relation may be derived between the initial relative
ensity 𝜌0 (or porosity 𝑐0) and final relative density 𝜌 (or final porosity
) of the unit-cell

=
𝜌0

det 𝐅𝚊𝚙𝚙
or 𝑐 = 1 −

1 − 𝑐0
det 𝐅𝚊𝚙𝚙

. (4)

This relation implies that the final relative density (or porosity) of the
unit-cell can be exactly controlled by the value of det 𝐅𝚊𝚙𝚙 that needs to
e applied.

In the context of Dirichlet-only boundary conditions, the deformed
olume of the unit-cell,  , is entirely defined in terms of the prescribed
eformation gradient 𝐅𝚊𝚙𝚙 from the purely kinematic relation  =
et 𝐅𝚊𝚙𝚙 0. If mixed Dirichlet–Neumann (or only Neumann) boundary
onditions were applied, still expression (4) is valid with 𝐅𝚊𝚙𝚙 replaced
y the average deformation gradient in the unit-cell. Nevertheless,
n this latter case, the average deformation gradient is not explicitly
nown but is the solution to the nonlinear finite deformation problem
3).

Finally, if a compressible matrix phase is used instead, part of the
mposed dilation will be absorbed by the matrix phase. The evaluation
f this proportion is not analytical and thus requires a continuous
ecording of the current porosity by post-processing to reach the de-
ired value. Instead, for a quasi-incompressible matrix, the results are
xpected to be fairly close to the purely incompressible case depending
n the value of the bulk modulus that will be used.

2 We note that other forms of energy functions may be prescribed. Nev-
rtheless, due to the large strains, the simple neo-Hookean law has shown
etter numerical convergence. By contrast, the use of elasto-plasticity would
ead to strain localization and highly heterogeneous void growth and thus is
ot recommended for such geometry construction.

https://gmsh.info
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Fig. 2. The developed remeshing algorithm for an orphan mesh based on geometry reconstruction. For illustration purposes, a simple 3D orphan mesh containing a spherical void
is used. The diagram shows the four steps required to remesh an orphan mesh. Step 4a: Reading the nodes and elements of the orphan mesh. Step 4b: Finding the free surfaces
of the elements. The green color corresponds to accepted free surfaces, whereas the red regions are rejected shared surfaces. Step 4c: Constructing the geometry of the orphan
mesh. Step 4d: Remeshing the new mesh with an arbitrary mesh algorithm.
Step 4: Geometry reconstruction and remeshing algorithm

The finite strain simulations in the previous step often lead to severe
mesh distortion and eventual termination of the numerical simulations
before reaching the desired porosity. Even if one reaches the prescribed
final porosity, the resulting mesh is extremely distorted to perform
any subsequent simulation or export the geometry for 3D-printing.
In both scenarios, a remeshing is required either at an intermediate
strain level to allow for the simulation to continue further or at the
final state. Recently, a method was used in Luo et al. (2023) to
perform such remeshing in three-dimensions based on the original work
of Hooshmand-Ahoor et al. (2022) in two-dimensions. That method was
only described briefly in that work since the focus was different. Here,
we provide more details on the approach. In particular, the proposed
remeshing approach has the following non-trivial properties:

• produces the geometry of any orphan mesh,
• preserves the deformed discretized geometry without any approx-

imation (up to the FE discretization accuracy),
• can identify regions with no elements i.e. void domains,
• can identify different phases, which is relevant for multi-phase

materials,
• can deal with both two- and three-dimensional geometries,
• can deal with different simplicial and hexahedral element types.

In the following, we describe the philosophy of the proposed remesh-
ing approach, which is divided into four substeps and is also summa-
rized in Fig. 2. The detailed set of algorithms is given in Appendix A.
For illustrative purposes, we consider a simpler 3D geometry containing
a single spherical void in the middle of the cube.

Step 4a : Import the orphan mesh and read the nodes and elements. We
first read the node and element data of the orphan mesh and store
them in corresponding matrices. We consider that the orphan mesh
contains 𝑛 nodes and each node 𝑖 contains three coordinate components
𝑥 , 𝑦 , 𝑧 in three dimensions. We define a matrix N , containing the
5

𝑖 𝑖 𝑖 𝑛×3
information of all nodes such that row𝑖(N) = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). Similarly, we
define a matrix M𝑚×ℎ to store the information of the elements. In this
matrix, 𝑚 is the number of elements and ℎ denotes the number of nodes
for each element, which may vary depending on the type and order
of the element. We have considered the most common element types
corresponding to tetrahedral and hexahedral elements with linear or
quadratic element orders, i.e., ℎ = 4, 8, 10, 20. One may extend this
method to other element types such as a triangular prism or higher
order quadrature. Step 4a in Fig. 2 represents an orphan volume mesh
of a matrix containing one spherical void, while the right side image
shows a cut view of the mesh.

Step 4b : Find the free surfaces of the elements. The resulting geometry
from the remeshing algorithm will be written in Gmsh format, which
is an open source software. It may be further converted to other CAD
formats if required. Gmsh allows building a complex 3D closed volume
by connecting a series of planes, which are the surface planes that
make the exterior boundary of the volume. The free surfaces of an
orphan mesh belong only to one element. In turn, a shared surface of an
element is shared by two elements simultaneously. The left image of the
Step 4b in Fig. 2 displays the identification process of the free surfaces.
The green surfaces correspond to the free surfaces of the individual
elements and the red ones to the shared ones. The right image of Step
4b shows all identified free points (nodes) and element surfaces of the
orphan mesh. These surfaces are used to construct the geometry in the
next step. The algorithm for finding the free surfaces of an orphan mesh
is described in Algorithm 1 in Appendix A.

In a nutshell, the surfaces that are not in common between two
different elements are identified and stored as free surfaces. The process
consists of two main loops that compare the nodes at each surface of
an element with all other elements. We consider that each surface of
an element contains 3 or 4 nodes for the tetrahedral or hexahedral
element type. In the case of quadratic elements, the middle nodes are
identified according to the corner nodes. To speed up the loops, we
define a matrix that contains the elements connected to each node in
order to limit the search over all elements, which results in a significant
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improvement in the speed of the algorithm. The free surfaces are stored
in the matrix S𝑓×𝑟, where 𝑓 denotes the total number of free surfaces
and 𝑟 = 3, 4, 6, 8 corresponds to the number of nodes on every side of
elements and will vary depending on the element type and order. It is
noted that the type and order of the elements are determined as input
by the user.

Step 4c : Construct the 3D geometry by the free element sides. The
identified free surfaces from Step 4b are then connected in order to
construct the closed volumes of the 3D geometry. The geometry entities
are built in a bottom-up manner (first points, then curves, surfaces,
and finally volumes) with the built-in OpenCASCADE kernel of the
geometry module in the Gmsh. Specifically, we denote every identified
free surface by 𝑠𝑖 = S(𝑖, 1 ∶ 𝑟), which is surrounded by more than two
free surfaces. Initially, the algorithm starts with the first free surface
𝑠1 ∈ {𝑠1, 𝑠2,… , 𝑠𝑓 } and then finds the second free surface connected
to it, which is determined by the node in common between the two
neighboring surfaces. The distinction between different closed volumes
𝑣𝑖 ∈ {𝑣1, 𝑣2,… , 𝑣𝑁} of the geometry is performed by checking whether
all remaining surfaces have no nodes in common with the current
volume. The process terminates when all free surfaces have been taken
into account and 𝑁 volumes are reconstructed.

Identifying multiple surface-loops/volumes implies that the orphan
mesh consists of a multi-phase material (i.e. there are either voids or
particles or a combination of both).3 Whenever required, we use the
Boolean operations available in the Gmsh Open-CASCADE kernel to cut
out the volume of the voids from the matrix or create a conformal mesh
at the particle-matrix interface.

It is worth mentioning that the proposed method requires all data
from the previous geometrical entities and thus can become extremely
time consuming. In order to speed up the process, we have limited the
search over all elements by looping over the defined matrix in Step
4b, which contains the elements connected to each node. Therefore,
the construction process even with extremely complex geometry does
not exceed a few seconds. This algorithm is described in Algorithm 2
in Appendix A.

Step 4d : Export the geometry, rescale and remesh. The constructed
geometry that is written in Gmsh geo format can be subsequently
converted into any CAD version or meshed with any desired method.
Specifically, in contrast to other existing remeshing methods, having
the geometry gives full control over the output mesh type. For example,
both the final geometry and the new mesh can be uniformly (or
non-uniformly) re-scaled to a specific size by multiplying all nodal
coordinates by a fixed set of three numbers along three different
directions. In our study, the new mesh is created with Gmsh software
nd is exported as an Abaqus input file (.inp) for simulations with
ifferent element types and orders.

The remeshing approach described in detail here has already been
sed in Luo et al. (2023) to carry out large strain simulations of
article reinforced composites where remeshing and stress mapping
ere necessary. In turn, the two-dimensional variant of the approach
as been used in Hooshmand-Ahoor et al. (2022) to export, 3D-print
nd experimentally test M-Voronoi porous materials.

. Examples of M-Voronoi and other random and periodic geome-
ries

We apply the previously discussed M-Voronoi generation process
o obtain geometries of a wide range of porosities in a cubic domain.
t is important to note here that such non-spherical void shapes have
lready been presented in the earlier works of Moraleda et al. (2007)

3 The number and type of phases can be assessed by the number of element
ets in the orphan mesh. In particular, when the material is porous, there is
nly one element set for the matrix phase.
6

and Michel et al. (2007), albeit with a scope of estimating the ho-
mogenization response of such RSA porous materials at finite strains.
Furthermore, we recall again that the geometry choice for unit-cells is
not limited to a cubic shape, but this is beyond the scope of the present
study (see Hooshmand-Ahoor et al. (2022) for relevant examples of
non-standard cells and loads).

In order to keep this study of readable size and since our interest
lies in comparing the M-Voronoi geometries with existing isotropic and
cubic ones, we specialize to isotropic purely hydrostatic deformation
gradients, i.e., 𝐅𝚊𝚙𝚙 = diag(𝜆𝚊𝚙𝚙, 𝜆𝚊𝚙𝚙, 𝜆𝚊𝚙𝚙) with 𝜆𝚊𝚙𝚙 > 1 such that
det 𝐅𝚊𝚙𝚙 = (𝜆𝚊𝚙𝚙)3 > 1.

In Fig. 3, we start with 110 initially spherical voids and initial
relative density 𝜌0 = 0.7 (𝑐0 = 0.3). The spherical voids progressively
grow into smooth polyhedral-type shapes, as is visually evident in the
cross-sectional view of the cells at the bottom of Fig. 3. This complex
geometry of the voids arises from the intricate interplay between the
disordered void distributions and the non-linear large deformations of
the surrounding matrix. This leads to Voronoi-type inclusion shapes
that are convex and non-quadratic. Furthermore, due to the random
distance between the centers of the initial spherical voids, the de-
formed intervoid ligaments have a random variation in thickness. As
one increases the applied 𝜆𝚊𝚙𝚙 to reach higher porosities the intervoid
ligament thickness becomes more uniform (see for instance the cell cor-
responding to 𝜌0 = 0.01, which is an extremely low density closed-cell
random foam).

More importantly, it is evident that the proposed M-Voronoi geome-
tries are realizable at solid densities spanning the full spectrum from 1
to very low (e.g., 0.01) as represented in Fig. 3. In order to obtain very
low relative densities 𝜌 ≤ 0.2, it is required to perform intermediate
remeshing to assist the simulations to reach the low targeted relative
density. In this example, in order to achieve the M-Voronoi with
relative densities 𝜌 = 0.2, 0.1, we have performed a remeshing of the
M-Voronoi geometry with 𝜌 = 0.3 and resumed the process without
mapping the stress fields. Since the interest here is in the final geometry
and not the stress distributions, this strategy is acceptable and less time
consuming. Using stress mapping is of course possible (see recent work
of Luo et al. (2023)). Nevertheless, we have found that the resulting
geometry changes only by little and given that it is random with little
dispersion in properties (as we will show in the following sections) such
an additional stress mapping requirement is not necessary.

For even lower relative densities i.e., 𝜌 = 0.05, 0.01 a second
remeshing is required of M-Voronoi geometries with 𝜌 = 0.1. As a result
of the limitations of the remeshing algorithm for severely distorted
quadratic elements (see Appendix B), the new mesh is generated using
linear tetrahedral elements, C3D4H, so that the final geometry can
be constructed accurately after remeshing in low densities. Again, the
very accurate resolution of the stress fields in these extreme cases is of
secondary importance compared to the quality of the grown geometry.

The M-Voronoi geometries analyzed in this study are compared with
existing geometries in the literature in order to gain insight into their
corresponding mechanical properties (see Fig. 4). The possibilities of
other comparison geometries that may be found in the literature are
countless and impossible to cover in one study. We choose to work with
three well-known geometries that were found in previous studies to be
fairly isotropic or at least cubic and provide rather stiff responses as
compared to other periodic or random geometries. These geometries
are

• the Gyroid geometry (Fig. 4b) which is a type of Triply Peri-
odic Minimum Surface (TPMS) geometry introduced by Schoen
(1970). It has been investigated extensively in different studies
and it was found to be easy to design and rather stiff in terms of
mechanical properties. Since it is periodic in nature it exhibits a
priori a cubic symmetry and is not isotropic,
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Fig. 3. 3D M-Voronoi obtained by using RSA geometry with initial relative density 𝜌0 = 0.7 (The first geometry). The color bar indicates the final relative density 𝜌 and the bottom
images represent the void shapes inside of the geometry. The densities 𝜌 ≤ 0.2 are obtained by using the corresponding 𝜌 = 0.3 as an initial geometry after remeshing it.
• the RSA with spherical voids (Fig. 4c) (Segurado and Llorca,
2002; Lopez-Pamies et al., 2013; Anoukou et al., 2018), which
was shown to lie very close to the Hashin–Shtrikman bounds in
linear elasticity experimentally and numerically (Zerhouni et al.,
2019; Tarantino et al., 2019),

• the Spinodoid geometry (Fig. 4d) introduced recently by So-
yarslan et al. (2018),Hsieh et al. (2019) and Kumar et al. (2020)
which is closely related to the well-known thresholded Gaus-
sian Random Field (GRF) approach (Roberts and Garboczi, 2001;
Zerhouni et al., 2021). Such a geometry was found to be promis-
ing in the inverse design of isotropic and anisotropic porous
materials (Kumar et al., 2020).

The features of each geometry are discussed in more detail below.
The Gyroid TPMS geometry (Fig. 4b) is constructed by approximat-

ing a surface in the Euclidean space R3 via the equation: sin(𝑥) cos(𝑦)+
sin(𝑦) cos(𝑧) + sin(𝑧) cos(𝑥) = 0. Specifically, we employ the TPMS
Designer, developed by Jones et al. (2021), which is a MATLAB-based
software for designing cellular structures. Nevertheless, the Gyroid
surface generated therein does not have the necessary mesh quality for
numerical simulations at large strains. To enhance the mesh quality, we
use the open source software MeshLab (Cignoni et al., 2008). For large
strain numerical simulations, we also transform the improved surface
mesh into a volume mesh using Gmsh. Despite their inherent period-
icity, the Gyroid geometries have non-uniform ligament thickness and
can span relative densities from 0.1 to 1. Below 𝜌 = 0.1, we observe
the occurrence of disconnected regions and thus we cannot proceed to
lower densities with this approach. Furthermore, the complex curva-
ture present in such Gyroid geometries poses significant challenges in
both meshing and manufacturing processes. It is important to mention
that although Gyroid geometries are stiffer than most of the periodic
structures, their response exhibits cubic symmetry (Bonatti and Mohr,
2019).

The random sequential adsorption (RSA) method (Lopez-Pamies
et al., 2013) leads to geometries with randomly distributed spherical
voids of varying sizes (i.e. polydisperse) or single size (i.e., monodis-
perse) in a cubic domain (Fig. 4c). The RSA geometries have random
features similar to the M-Voronoi ones such as random ligament thick-
ness. They allow for a complete control of the void shapes and thus
are easier to use to cover a wide range of behaviors from isotropic to
anisotropic and from stiff to soft ones. M-Voronoi, by construction, are
seamless descendants of the RSA geometries as explained before and
exhibit almost identical constitutive responses at small and moderate
porosities (i.e. 𝑐 ≤ 0.4). By contrast, it is substantially more difficult to
generate representative RSA geometries at low relative densities (𝜌 <
0.3) as already discussed in Tarantino et al. (2019), since they require
an extremely large range of void sizes in that case. This implies that
numerical simulation and experimental realization become prohibitive
at such large porosities.
7

The random Spinodoid solid geometries (Fig. 4d) are obtained
through spinodal phase separation by Gaussian random field (GRF).
Despite the random features of Spinodoid geometries and their ability
to offer tailored isotropic and anisotropic responses (Soyarslan et al.,
2018; Kumar et al., 2020), they can only cover a limited relative
density range between 0.7 and 0.2 (Maskery et al., 2017), unless a shell
type process is used (Hsieh et al., 2019). More importantly, it appears
to be extremely challenging to create a volume mesh on Spinodoid
geometries, mainly due to their complex and highly curved patterns.
In fact, there exist numerous regions where the local curvature is
extremely high leading evidently to stress concentrations and difficulty
in meshing. These features obviously become (as we will see in the
following) more critical at large strains than at small ones. In this work,
Spinodoid geometries are created by use of the Gibbon Matlab Toolbox
(see more in Kumar et al. (2020)). The volume mesh generation for
Spinodoid geometries has to undergo a complex and time consuming
process primarily using Meshlab software to ensure sufficient mesh
quality for small and large strain simulations. It is also worth mention-
ing that the Kumar et al. (2020) process does not produce by default
smooth interfaces between the voids and the matrix, thus making those
materials more prone to deformation localization, especially in the
present context of elasto-plasticity.

We close by noting that the proposed M-Voronoi geometries are
realizable at a full density range and encompass various random charac-
teristics, such as void shape, size, distribution, and ligament thickness.
Furthermore, with the assistance of the developed remeshing algorithm
in Appendix A, the volume mesh generation process for M-Voronoi
geometries is fast, efficient and grants precise control over the resulting
mesh quality at least up to relatively low densities (𝜌 ≥ 0.07). At
extremely low densities, i.e. 𝜌 < 0.05, the volume meshes become
extremely fine, and thus not suitable for large deformations, but remain
fairly accurate for 3D-printing. For 𝜌 ≤ 0.05, the M-Voronoi resem-
ble closely the standard Voronoi constructions (see Hooshmand-Ahoor
et al. 2022) both in geometry and constitutive response. For the latter, it
is straightforward to use shell elements to analyze the very low relative
density regime.

In the following sections, we will examine the mechanical behavior
of the M-Voronoi geometries at both small and large strains over a
wide relative density range and compare the corresponding results with
Gyroid, RSA and Spinodoid geometries.

4. Elastic stiffness response at small strains

In this section, we study the macroscopic linear elastic properties of
M-Voronoi, Gyroid, RSA and Spinodoid geometries over their attainable
range of relative densities through numerical simulations. Given that
the Spinodoids are not periodic and the fact that we are interested
in the apparent response of the designed geometries, we will focus in
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Fig. 4. (a) M-Voronoi with 110 voids obtained by using an RSA geometry with initial relative density 𝜌0 = 0.7. (b) Gyroid lattices with 5 × 5 × 5 unit-cells. (c) Polydisperse RSA
geometries with various sphere sizes. (d) Spinodoid geometries obtained through spinodal phase separation by Gaussian random field (GRF). The color bar indicates the relative
density 𝜌 of the geometries. The cross shows the unrealizable geometries.
the next two sections on non-periodic boundary conditions. The reason
for such a choice is related to the recent works of Zerhouni et al.
(2019),Tarantino et al. (2019) and Hooshmand-Ahoor et al. (2022),
where the realization of these geometries via 3D-printing and exper-
imental testing was shown to be possible. In particular, it was shown
therein that periodic conditions by construction lead rapidly (i.e. with
the use of less number of voids) to representative material response.
Because of this fast convergence, they provide no practical information
on the size of the RVE that is required for experimental material
representativity. For this reason, having in mind the potential experi-
mental realization of such materials, we focus on non-periodic, realistic
boundary conditions.

We obtain the macroscopic (apparent) elastic moduli for random
porous geometries through linear elastic finite element (FE) simulations
performed on unit-cells using Abaqus/Standard finite element software
and following the approach of Kanit et al. (2003). Simulations are
performed using standard linear 8-node hexahedral elements (C3D8 in
Abaqus). Examples of such meshes and the procedure for obtaining
them are discussed in Appendix C. The matrix phase is modeled as
purely isotropic linear elastic without any plasticity, while the void
phase is left unmeshed. The unit-cell is subjected to a kinematically
uniform boundary conditions (KUBC) (Michel et al., 1999; Mbiakop
et al., 2015) defined such that the displacement field 𝐮(𝐱) at point 𝐱 = 𝐗
8

(at small strains) in the microstructure is given by

𝐮(𝐱) = 𝜺𝚊𝚙𝚙 𝐱, (5)

where 𝜺𝚊𝚙𝚙 is a constant second-order symmetric tensor. Given that the
number of voids is sufficiently large, one may consider the response
representative at least in the context of linear elasticity as shown
recently by Zerhouni et al. (2019).

We compute the homogenized fourth-order elastic stiffness tensor
𝐂 from the average stress and strain fields through the constitutive
equation (Hill, 1963)

⟨𝝈(𝐱)⟩ = 𝐂 ⟨𝜺(𝐱)⟩, (6)

where ⟨⋅⟩ denotes the volume average of the enclosed quantity. It
is readily obtained by use of the affine conditions in (5) that the
average strain in the cubic cell is equal to the externally applied
one, i.e., ⟨𝜺(𝐱)⟩ = 𝜺𝚊𝚙𝚙. The macroscopic elastic stiffness tensor 𝐂 is
computed by running six independent calculations (taking into account
the symmetry of the applied strain), where a uniform macroscopic
strain is applied along a specific direction, i.e. 𝜀𝚊𝚙𝚙𝑖𝑗 with 𝑖, 𝑗 = 1, 2, 3
(no sum on 𝑖, 𝑗). Due to the finite number of voids, the tensor 𝐂 is
not exactly isotropic. In order to extract meaningful quantities and
evaluate its deviation from isotropy, we define an isotropic stiffness
tensor, denoted by 𝐂𝑖𝑠𝑜, which is calculated by the projection of 𝐂 along
the fourth order hydrostatic and deviatoric space by use of the tensors
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Fig. 5. (a) Normalized bulk modulus 𝜅∕𝜅𝑚 and (b) shear modulus 𝜇∕𝜇𝑚 as a function of relative density 𝜌 obtained by FE simulations together with the Hashin–Shtrikman bounds
(dashed lines) that are included for comparison, (c) Deviation from isotropy 𝛿𝑖𝑠𝑜 for different geometries and various values of relative density 𝜌. 𝜅𝑚 and 𝜇𝑚 denote the bulk and
shear moduli of the matrix phase and a matrix Poisson ratio 𝜈𝑚 = 0.3 is used in all simulations.
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𝐉 and 𝐊, respectively,4 as

𝑖𝑠𝑜 = 3𝜅 𝐉+2𝜇𝐊, 𝜅 = 1
3
𝐂 ⋅𝐉 =

𝐶𝑖𝑖𝑗𝑗

9
, 𝜇 = 1

10
𝐂 ⋅𝐊 =

3𝐶𝑖𝑗𝑖𝑗 − 9𝜅
10

. (7)

ere, 𝜅 and 𝜇 correspond to the apparent projected bulk and shear
oduli, respectively, shown in Fig. 5a,b. The deviation from isotropy

s, in turn, defined in terms of a scalar parameter 𝛿𝑖𝑠𝑜, evaluated as

𝑖𝑠𝑜 =
‖𝐂 − 𝐂𝑖𝑠𝑜

‖𝐹
‖𝐂‖𝐹

. (8)

Here, ‖𝐀‖𝐹 =
√

Tr(𝐀 ⋅ 𝐀𝑇 ), is the Frobenius norm of the tensor 𝐀.
The case of 𝛿𝑖𝑠𝑜 = 0 corresponds to exact isotropy. This measure is
more complete than the Zener measure since it addresses all shear

4 The hydrostatic and deviatoric projection tensors are defined by 𝐽𝑖𝑗𝑘𝑙 =
1∕3)𝛿𝑖𝑗𝛿𝑘𝑙 and 𝐊 = 𝐈−𝐉, respectively. 𝐈 is the identity fourth-order tensor such
hat 𝐼𝑖𝑗𝑘𝑙 = (1∕2)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), while 𝛿𝑖𝑗(with 𝑖 = 1, 2, 3) is the identity second-
rder tensor. We note that 𝐉 and 𝐊 follow the relations 𝐉 ⋅ 𝐉 = 𝐉, 𝐊 ⋅ 𝐊 = 𝐊,
nd 𝐉 ⋅𝐊 = 𝐊 ⋅ 𝐉 = 𝟎.
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d

omponents diagonal and off-diagonal. It is evident that for a proper
nterpretation of the following results, one should analyze all three
uantities simultaneously, i.e., 𝜇, 𝜅 and 𝛿𝑖𝑠𝑜. The numerically-obtained
pparent projected elastic properties of the porous geometries are also
ompared with the Hashin–Shtrikman (HS) theoretical bounds for the
ulk and/or shear modulus (Hashin and Shtrikman, 1963). In Fig. 5a,b,
e observe the results from the FE simulations of M-Voronoi, RSA,
yroid and Spinodoid geometries as a function of the relative density
= 1− 𝑐 (𝑐 denoting the porosity). Here, 𝜅∕𝜅𝑚 and 𝜇∕𝜇𝑚 correspond to

he normalized apparent bulk and shear moduli, respectively. In turn,
𝑚 and 𝜇𝑚 denote the bulk and shear moduli of the matrix phase. In
ll simulations, we have used a Poisson ratio 𝜈𝑚 = 0.3 for the matrix
hase. The effective bulk and shear modulus of the M-Voronoi and
SA geometries for relative densities up to 0.2 are almost identical
nd lie very close to the Hashin–Shtrikman (HS) bounds. This similarity
rises primarily from the shared microstructure characteristics of these
wo geometries, i.e., the random void and intervoid ligament sizes.
owever, contrary to the RSA geometries, which have a limited relative
ensity range, M-Voronoi geometries can be simulated in the case of
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Fig. 6. A property space map of Young’s modulus versus relative density 𝜌 comparing
the present geometries of M-Voronoi, RSA, Gyroid, and Spinodoid to other closed- and
open-cell foams of similar density and to nano- and macro-lattices.

small strain elasticity up to relative densities as low as 𝜌 = 0.03. The
effective properties of both Gyroid and Spinodoid geometries exhibit
substantial deviations from the HS bounds when relative densities fall
below 0.5. Notably, the deviation is more pronounced in the case of
Spinodoid solid geometries, for which we have been able to simulate
only up to relative densities 𝜌 = 0.3.

In summary, M-Voronoi and RSA geometries exhibit the stiffest
response compared to the Gyroid and Spindoid geometries. Given the
simplicity of the generation of RSA geometries, at relative densities 𝜌 >
0.3, they are a promising option among the studied geometries. At lower
relative densities, one may use the M-Voronoi geometry which shows
very promising properties, despite the complexity of its generation.

The previous elastic results should be interpreted in direct connec-
tion with the deviation from isotropy 𝛿𝑖𝑠𝑜, shown in Fig. 5c. We observe
that in RSA geometries, the numerical deviation from isotropy is found
to be less than 0.01 for 𝜌 ∈ [0.2, 1]. The deviation from isotropy in M-
Voronoi geometries on the other hand, develops gradually, reaching a
value of ∼ 0.06 at 𝜌 = 0.03. The 𝛿𝑖𝑠𝑜 values of Gyroid and Spinodoid
geometries are similar and are generally greater than those for M-
Voronoi and RSA geometries at equivalent corresponding densities.
While that is expected for the Gyroid geometries, which are naturally
cubic, the strong deviation of anisotropy for the Spinodoids implies
that they need a substantially smaller wavelength to reach isotropy.
This makes their realization and simulation extremely difficult with
standard FE. Instead, one could use FFT grids as an alternative. Note,
however, that FFT solvers cannot handle the large strain compressive
simulations of the following section. These observations are consistent
with recent studies on the very similar thresholded Gaussian Random
Field geometries (Zerhouni et al., 2021).

Fig. 6 compares the apparent Young’s modulus obtained in the
present study with available data in the literature for other porous
materials and fully stochastic foams manufactured using conventional
processes like foaming and replication (Tarantino et al., 2019). It can
be observed that the M-Voronoi geometries of this work exhibit the
stiffest response among all the shown data and lie very close to the HS
bounds (denoted with a dashed line) over a very wide density range (up
to 0.03). Moreover, we observe that both M-Voronoi and RSA exhibit a
rather nonlinear response with 𝜌 and thus any scaling law would have
had a small range of validity and thus no such analysis is carried out
10

here. i
5. Elasto-plastic response at large strains

In this section, we assess the mechanical properties of 3D M-Voronoi
geometries at large deformations and for elastic ideally-plastic matrices.

The interest in this study is in the large strain response of the
previously-described geometries and in particular for fairly low den-
sities. We focus on two such loading conditions: uniaxial compression
and simple shear. The first is of practical importance and the second al-
lows us to probe the large strain diagonal anisotropy that may develop
as compared to the corresponding one in compression.

Due to the finite strains and extensive random contact between void
surfaces, the only possible option is the use of an explicit solver instead
of an implicit one. In the present study, we use the Abaqus/Explicit
solver with the *NLGEOM option activated and sufficiently small rates
and time increments to preserve quasi-static conditions and numerical
convergence. We consider an elastic ideally-plastic matrix phase with a
fixed yield stress 𝜎𝑦, Young’s modulus 𝐸𝑚 = 1000𝜎𝑦 and Poisson’s ratio
𝜈 = 0.3. All results are readily normalized with the matrix yield stress
by considering a value 𝜎𝑦 = 1.

An extensive study of the effect of element type (not shown here for
brevity) has shown that brick hexahedral, reduced integration, linear
elements (C3D8R) are the best candidates for elasto-plastic simulations
leading to a very good numerical convergence and acceptable cpu
computation time. The three-dimensional mesh in all geometries is
created with Gmsh software using the hexahedra subdivision algorithm
(see Appendix C). The computation time for a hexahedral element-type
mesh with 9 × 105 nodes corresponds to approximately 100 h when
unning on 40 cores in parallel. This requires in general extremely
arge amounts of memory and thus the possibility of restarting the
imulations is primordial. To achieve this, extensive use of the option
VERLAY, which stores the data in the most recent increment and
emoves the previously stored data is done to minimize memory usage
iven the very large domain sizes in the considered geometries. The
imulation is then resumed by the use of the RECOVER option.

.1. Results: uniaxial compression

This section presents the results obtained for the M-Voronoi, RSA,
yroid and Spinodoid geometries when subjected to large strain uni-
xial compression loading. In particular, we carry out the simulation
y applying a displacement normal to one of the cube surfaces, while
locking the other two tangential components. At the opposite surface,
e apply clamped boundary conditions. The remaining side surfaces
f the cube are left traction-free. Such a load mimics rather closely
ealistic conditions in the laboratory and thus experimental data in the
iterature. Instead, one could apply a pure uniaxial compression. The
ifferences between those two loading conditions are fairly small for
uch high porosity foams.

All stress measures in this section are the engineering ones, i.e., they
re extracted by dividing the total force applied on the side of the cube
hose displacement is controlled by its initial surface which is equal to
nity. The corresponding strains are also the engineering ones obtained
y dividing the total applied displacement by the initial side length of
he cube which is unity again.

In order to compare the four geometries, we show in Figs. 7 and
uniaxial compression simulations for relative densities 𝜌 = 0.42, 0.33.
ll geometries (but the Gyroid) have been tested in all three normal
ubic directions, which corresponds to three different realizations given
heir randomness. They all show a fairly small dispersion along these
hree directions indicating a rather converged macroscopic material
esponse. In particular, the M-Voronoi and RSA geometries exhibit a
elatively good isotropic response5 even at large strains, while the

5 The use of ‘‘cubic symmetry’’ is obviously more rigorous than the use of
‘isotropic’’. Nonetheless, given the randomness of the solids, the word isotropy
s used with a slight abuse of notation.
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Fig. 7. Large strains compression engineering stress and strain curves for M-Voronoi, RSA, Gyroid and Spinodoid geometries with relative density 𝜌 = 0.42. Deformed geometries
at three intermediate strain levels, denoted by (1), (2) and (3) are displayed at the bottom. The color bar indicates the equivalent accumulated plastic strain values.
Spinodoid is slightly more dispersive and thus less isotropic (which
is in accord with the results found in Fig. 5c). In turn, the Gyroid
geometry has a perfect cubic symmetry and thus along the main cubic
directions, the response is exactly equivalent, exhibiting no dispersion.
Interestingly, the yield stress and large strain plastic response of the
M-Voronoi and RSA geometries are almost identical and much higher
than the Gyroid and Spinodoid geometries. This result shows clearly
that randomness as such is not enough to achieve enhanced mechanical
(or other) properties since Gyroid overall provides stiffer responses than
the random Spinodoid one. The Spinodoid geometries lead to the lowest
yield stress and overall flow response at large strains, albeit exhibiting
a larger hardening rate. They also seem to start densification somewhat
earlier than the rest of the geometries considered here. Unfortunately,
we were unable to continue the simulations beyond the overall strains
of 0.45 for the Spinodoid geometry, which was found to be by far the
most challenging one to mesh and simulate with FE.

In order to gain further insight, we also include the deformations of
the four geometries at three different strain levels, denoted by (1), (2),
and (3) in Figs. 7 and 8. By plotting the accumulated equivalent plastic
11
strain (PEEQ in Abaqus notation) of the deformed geometries, we
observe that the random features of the M-Voronoi and RSA geometries
such as random void size, shape, position, and ligament thickness,
lead to a diffuse distribution of plastic localization at various uncon-
nected zones of the specimen. This seems to be a rather interesting
enhancement when compared with existing open-cell foams which tend
to localize in long wavelength bands (Barnes et al., 2014; Gaitanaros
and Kyriakides, 2014). In those cases, the ligaments have a more
uniform size distribution, leading to easy collapse paths throughout the
specimen despite their random distribution. Of course, this is expected
to be the case as well in the M-Voronoi at much lower densities (less
than 0.05).

For a better understanding, we show in Fig. 9 corresponding mid-
plane cross-sectional contours of the plastic shear 𝜀𝑝12 and normal
𝜀𝑝22 strains. We observe that the M-Voronoi and RSA exhibit multiple
low deformation pockets and a more diffuse straining but without
evidence of long wavelength localization. By contrast, the Gyroid has,
by construction, a periodic distribution of straining. In all but the
Spinodoid geometry, we observe also a rather pronounced presence
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Fig. 8. Large strains compression engineering stress and strain curves for M-Voronoi, RSA, Gyroid and Spinodoid geometries with relative density 𝜌 = 0.33. Deformed geometries
at three intermediate strain levels, denoted by (1), (2) and (3) are displayed at the bottom. The color bar indicates the equivalent accumulated plastic strain values.

Fig. 9. Two-dimensional deformed cross-sections for M-Voronoi, RSA, Gyroid and Spinodoid geometries with relative density 𝜌 = 0.42. Deformed geometries at two intermediate
macroscopic strain levels 0.2 and 0.4 (see Fig. 7). The color bars indicate the shear 𝜀𝑝12 and normal 𝜀𝑝22 plastic strains.
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Fig. 10. Yield stress results for the M-Voronoi, RSA, Gyroid and Spinodoid geometries
s a function of the relative density 𝜌 obtained by FE simulations. For comparison
urposes, we also include the Ponte-Castañeda-Suquet (PC-S) bound for stress triaxiality
1∕3, which is that for uniaxial compression.

f plastic shear strains 𝜀𝑝12, which implies that one cannot see such
tructures neither as stretching nor as bending type. In turn, the Gyroid
nd Spinodoid exhibit multiple empty regions at the cross-sectional
evel, which is a direct consequence of the void connectivity in the
atrix (Bonatti and Mohr, 2019; Zerhouni et al., 2021). In particular,

ontrary to the Gyroid, the Spinodoid seems to localize most of the
training in a few thin ligaments and due to the open porosity is not
ble to re-transmit the forces to neighboring undeformed domains. This
xplains to a large extent the overall soft response of this geometry.

Such responses as that of the periodic Gyroid are fairly known
o occur also in other periodic geometries including trusses, lattices,
nd plate-based architected materials. A critical issue of periodic ge-
metries, that should be taken into account during manufacturing, is
heir imperfection sensitivity which is not present in random materials
s the RSA, M-Voronoi and Spinodoids. At this point, it is important
o mention that despite their stiff response, M-Voronoi and RSA are
losed-cell porous materials and thus their realizability by use of the
urrent 3D-printing technology is yet not feasible, unless a very soft
upport material is used in the void phase (Tarantino et al., 2019). In
he latter case, the support material adds to the overall weight thus
aking the structure not lightweight. Nevertheless, new 3D-printing

echnologies with movable printing bases are currently being developed
hich may allow in the future the 3D-printing of enhanced materials

uch as the M-Voronoi and RSA ones. Moreover, more traditional
oaming techniques can also result in M-Voronoi type materials.

Fig. 10 reports collective yield stress data as a function of the
elative density 𝜌. Those data are extracted by use of a 0.2% offset
train approach and small strain uniaxial compression elastoplastic
imulations (with strain amplitude not exceeding 2%). We have verified
hat the small strain implicit calculations and large strain explicit
alculations have negligible differences at such low strain amplitudes.
or comparison purposes, we also show the modified estimate of Suquet
1993), which is very close in this case of low stress triaxiality to the
ound of Ponte Castañeda (1991), denoted as PC-S bound in Fig. 10.
gain, we observe that the M-Voronoi and RSA almost overlap, while

he Gyroid leads to lower yield stress than the other two. The Spinodoid
xhibits a very sharp drop near 𝜌 ∼ 0.3, similar to its elastic response.

For completeness, Fig. 11 presents the stress–strain response of
he M-Voronoi geometries at four different relative densities 𝜌 =
.42, 0.33, 0.20, 0.10. As intuitively expected, the larger the density, the
13

o

Fig. 11. Large strains compression simulations for M-Voronoi geometries at four
different relative densities 𝜌 = 0.42, 0.33, 0.20, and 0.1. The values of stress and strain
orrespond to their nominal or engineering values.

tiffer the flow response and the higher the computed yield stress. An-
ther observation is that the hardening rate of the stress–strain response
ecreases with decreasing relative densities. The reason for this can be
xplained by the fact that at higher relative densities, the void walls
stablish contact earlier than for lower densities and thus hardening
ppears earlier. Moreover, at higher densities, the local deformation of
he matrix is triaxial with important shearing, while at lower densities
he deformation becomes of a more bending and stretching type. This
ast set of results shows that the M-Voronoi geometries are fairly robust
o mesh and simulate at large strains and for a wide range of relative
ensities considered here. This makes them excellent candidates for
nalyzing the response of industrially manufactured closed-cell foams.

We close by noting that both the M-Voronoi and the Gyroid, two
f the microstructures that allowed us to reach very low densities
ecome increasingly difficult to simulate in elasto-plasticity (elasticity
s more forgiving in that sense) at 𝜌 < 0.1 with 3D finite elements
ue to strong deformation localization. This is somewhat expected and
eyond this point, one should resort to more approximate numerical
echniques using shell elements. The M-Voronoi for 𝜌 < 0.1 resembles
ery closely the standard eroded Voronoi materials, which are easier
o use with shell elements. Instead, the present M-Voronoi can be 3D-
rinted using the existing approach even at low densities depending of
ourse on the accuracy of the 3D-printer at hand. The Gyroid, on the
ther hand, is less trivial to analyze at lower relative densities with the
urrent approach and one needs to use a shell type of approach (see for
nstance Hsieh et al. 2019).

.2. Results: simple shear

Similar results to those in uniaxial compression have also been
btained when the porous geometries are subjected to simple shear
oading. We carry out the simulation by applying a displacement tan-
ential to one of the cube surfaces, while blocking the remaining
wo components. At the opposite surface, we apply clamped boundary
onditions. The remaining side surfaces of the cube are left traction-
ree. Such a load again mimics rather closely realistic conditions in the
aboratory and thus experimental data in the literature. Fig. 12 shows
uch results for the four considered geometries at two different relative
ensities 𝜌 = 0.42, 0.33. In this case, the stress response of the M-Voronoi
nd RSA are fairly close to each other only initially, whereas at larger
trains the RSA exhibits a softer response. Interestingly, the Gyroid
eometry lies much closer to the RSA curves (contrary to the case

f uniaxial compression) indicating a significant anisotropic response
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Fig. 12. Simple shear response for M-Voronoi, RSA, Gyroid and Spinodoid geometries for relative densities (a) 𝜌 = 0.42 and (b) 𝜌 = 0.33.
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f the earlier. This is somewhat expected since simple shear can be
nderstood as pure shear tension/compression (at least initially at small
trains) along the diagonal direction, which is naturally stiffer than
he normal directions in the Gyroid geometries. Finally, the Spinodoid
eometry response remains substantially lower than the rest of the
eometries analyzed here.

. Conclusions

In this work, we have developed a mechanically-grown geometry
eneration method based on nonlinear elastic finite strain computations
o create M-Voronoi porous (or composite) materials that span almost
he entire relative density range from 1 all the way to 0.01. The
onlinear elastic energy minimization of the matrix phase together with
he initial RSA geometry has led to random but smooth, convex void
hapes and sizes and non-uniform intervoid ligament sizes in the M-
oronoi material. This enhanced randomness has been found to be
eneficial for the mechanical properties of the porous material both
n terms of stiffness and flow stress.

By comparison with other geometries, random and periodic, we
ave shown unambiguously that randomness may lead to enhanced me-
hanical properties but is not a panacea. It actually depends on the type
f features employed, their smoothness and perhaps more importantly
ow random they are. Specifically, we have found that M-Voronoi and
olydisperse RSA with spherical voids almost coincide in the range that
SA is realizable and attainable (i.e. relative densities larger than 0.2)
nd exhibit the stiffest and highest flow stress response. This has been
ttributed to variable void size and shape (for the M-Voronoi) and the
omplex shape and non-uniform thickness of the intervoid regions that
ave non-convex polyhedral shapes. These features lead to a diffuse
ap of strain localization instead of long wavelength localization bands

hat span the entire specimen.
In turn, the Gyroid TPMS periodic geometry exhibits lower stiffness,

ield and flow stress than the two previously-mentioned random ge-
metries. Nevertheless, its simplicity in design is an advantage over the
-Voronoi material. The RSA method on the other hand is fairly simple

nd extremely fast to use but like the Gyroid, it is difficult to reach
ow to very low relative densities. Finally, the Spinodoid geometry is
he less resistant one both in terms of elasticity and yield/flow stress.
n addition, it reaches percolation and thus zero stiffness at relative
ensities just below 𝜌 < 0.3. On the other hand, Spinodoids and Gy-
oids are open-cell geometries with rather well-controlled connectivity
eatures, thus offering potential advantages in thermal or diffusion
14

ransport applications. Recently, the RSA geometry has been extended
o include connectivity allowing for non-zero permeability properties
aintaining better mechanical stiffness than the thresholded Gaussian
andom Fields (a cousin of Spinodoids) (Zerhouni et al., 2021).

As a byproduct of the M-Voronoi generation process, a novel and
ersatile remeshing algorithm has also been proposed that allows to
ead and remesh complex orphan meshes. This algorithm uses Python
cripting and is extremely fast irrespective of the size and detailed
eatures of the mesh analyzed. It has been recently used to carry out
umerical finite strain simulations of particle reinforced composites
hich require extensive remeshing and stress mapping (Luo et al.,
023). Remeshing has been shown to be absolutely necessary to reach
ower densities as well as to provide a good quality mesh for the
ubsequent elasto-plastic simulations.

We close by noting that, similar to Gyroid and Spinodoids, the
roposed M-Voronoi and older RSA geometries can be readily extended
o obtain composite materials with two or more phases (Papadioti
t al., 2016; Bele et al., 2017) thus allowing them to reach very high
olume fraction of inclusions. This could be of interest in applications
eyond mechanics such as magnetic, piezoelectric or magneto-electric
omposites (Mukherjee et al., 2021; Lopez-Donaire et al., 2022).
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Appendix A. Algorithms for remeshing a 3D orphan mesh by con-
structing the geometry

Nomenclature:

• 𝑛: total number of nodes in the orphan mesh
• 𝑚: total number of elements in the orphan mesh
• ℎ: the number of nodes per element
• 𝑟: the number of nodes per element surface
• 𝑓 : the number of free surfaces
• 𝑁 : the number of volumes
• N𝑛×3: matrix containing the nodes coordinates
• M𝑚×ℎ: matrix containing the elements information
• S𝑓×𝑟: matrix containing the nodes of free surfaces
• 𝑠𝑖 = S(𝑖, 1 ∶ 𝑟): the individual identified free surface
• 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑓 }: the group of all identified free surface
• 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑁}: the group of all closed volumes
• 𝑆𝑖 All the free surfaces on volume 𝑖
• 𝑃𝑖 All the free nodes on volume 𝑖

Algorithm 1 Finding the free surfaces of an orphan mesh.
1: Initialize the algorithm with the number of free surfaces 𝑓 = 0
2: for 𝑝 = 1, 𝑚 do
3: for 𝑞 = 1, ℎ do
4: 𝑟𝑒𝑓 = [M(𝑝, 𝑞), M(𝑝, 𝑞 + 1), M(𝑝, 𝑞 + 2) ]
5: for 𝑢=1, number of elements with common node 𝑞 do
6: for 𝑣 = 1, ℎ do
7: 𝑐𝑜𝑚𝑝 = [M(𝑢, 𝑣), M(𝑢, 𝑣 + 1), M(𝑢, 𝑣 + 2) ]
8: if 𝑟𝑒𝑓 = 𝑐𝑜𝑚𝑝 then
9: goto 3

10: else
11: if h=4 then ⊳ Linear tetrahedron element
12: S(𝑓, ∶) = [M(𝑝, 𝑞), M(𝑝, 𝑞 + 1), M(𝑝, 𝑞 + 2) ]
13: 𝑓 ← 𝑓 + 1
14: else if h=10 then ⊳ Quadratic tetrahedron

element
15: S(𝑓, ∶) = [M(𝑝, 𝑞), M(𝑝, 𝑞 + 1), M(𝑝, 𝑞 + 2),

midnode12, midnode23, midnode31 ]
16: 𝑓 ← 𝑓 + 1
17: end if
18: end if
19: end for
20: end for
21: end for
22: end for
15
Algorithm 2 Constructing 3D geometry by the identified free surfaces.
1: Initialize the algorithm with the number of identified volumes 𝑁 =

0
2: for 𝑠𝑖 ∈ 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑓 } do
3: if 𝑠𝑖 is already investigated then
4: goto 2
5: else
6: 𝑁 = 𝑁 + 1
7: Add 𝑠𝑖 to 𝑆𝑁 ⊳ 𝑆𝑁 corresponds to the set of free surfaces

in the current volume 𝑣𝑁
8: Add the nodes on 𝑠𝑖 to 𝑃𝑁 ⊳ 𝑃𝑁 corresponds to the set of

free nodes in the current volume 𝑣𝑁
9: for 𝑠𝑗 ∈ the surfaces connected to the nodes in 𝑃𝑁 do

10: if 𝑠𝑗 is already investigated then
11: goto 9
12: else
13: Add 𝑠𝑗 to 𝑆𝑁
4: Add the nodes on 𝑠𝑗 to 𝑃𝑁
5: goto 9
6: end if
7: end for
8: end if
9: At this point all the free surfaces of the volume 𝑣𝑁 are

investigated.
0: 𝑣𝑁 = {𝑃𝑁 ;𝑆𝑁} ⊳ The nodes and the surfaces sets 𝑃𝑁 and 𝑆𝑁

construct the volume 𝑣𝑁
1: Add 𝑣𝑁 to 𝑉 ⊳ The volume 𝑣𝑁 is added and we can start the

construction of the next volume 𝑣𝑁+1, if there is any.
2: end for
3: 𝑁 = number of identified volumes

Fig. B.13. The limitations of the 3D remeshing algorithm in the case of quadratic
elements. (a) The possible node connection methods for a free surface of a quadratic
tetrahedral element type. We note that the nodes are not in the same plane. (b) The
degenerate cases of each connection method when excessive element distortion exists.
In both cases, the red line overlaps the neighboring elements.

Appendix B. Some issues with the remeshing technique

In spite of the flexibility of the proposed remeshing method, cer-
tain limitations exist and are important to be stated. The proposed
remeshing method is applicable to all element types with linear order.
Also in practice, one can approximate the quadratic elements with the
corresponding linear type, by connecting the corner nodes and ignoring
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Fig. C.14. Examples of final hexahedral meshes used in the small and large strain elasto-plastic simulations.
the middle nodes. However, this will lead to a minor difference (< 3%
depending on the mesh size) between the actual and reconstructed
volume fraction of the embedded phases.

Specifically, the reconstruction algorithm is found to have limi-
tations when dealing with quadratic elements under very large de-
formations. In contrast to linear elements, the points of a surface in
a deformed 3D quadratic element do not lie on the same plane. As
a result, in the case of very large deformations, one may run into
different degenerate cases such as the ones shown in Fig. B.13b. In such
cases, one can construct instead the deformed surface by ignoring the
mid nodes and only connecting the corner nodes to define a single
plane.

Specifically, in Fig. B.13a, two possible connection methods for
points on a free element surface are shown, where the corner and
middle nodes are represented by solid circles and crosses, respectively.
It is important to note that the points are not on the same surface. The
3D surface is then constructed by connecting four triangular surfaces.
It has been observed that both of the proposed connection methods
can accurately (without any loss of volume fraction) construct the
deformed geometry up to large distortions of the elements. However,
large deformations in the geometry, whether local or global, may cause
the elements to be distorted such that both approaches will not work.
Fig. B.13b represents the degenerate cases of each approach. In both
cases, the red line overlaps the neighboring elements and subsequently,
the geometry construction will be unsuccessful. Such distortions are
mainly present at low densities 𝜌 < 0.2. In order to avoid such
limitations, two approaches can be followed: first, the simulation can be
stopped before excessive element distortion and the deformed mesh can
be remeshed (with or without stress mapping) to improve the quality of
the elements and second, the quadratic elements can be approximated
by linear type. We note that the second approach will add a small error
to the final volume fraction and might not work if the elements are
highly distorted.

Appendix C. Examples of hexahedral meshes

Fig. C.14 shows examples of the meshes used to carry out the small
and large strain elasto-plastic simulations in the present work. The
exhibited meshes comprise approximately 106, 8-node, isoparametric,
hexahedral, conformal elements. The meshing is carried out using first
a tetrahedral automatic meshing option and subsequently a hexahedra
subdivision method in Gmsh.
16
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