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In Part I of this work, we have proposed a new model based on the “second-order” nonlinear
homogenization method for determining the effective response and microstructure evolution in visco-
plastic porous media with aligned ellipsoidal voids subjected to general loading conditions. In this second
part, the new model is used to analyze the instantaneous effective behavior and microstructure evolution
in porous media for several representative loading conditions and microstructural configurations. First,
we study the effect of the shape and orientation of the voids on the overall instantaneous response of
a porous medium that is subjected to principal loading conditions. Secondly, we study the problem
of microstructure evolution under axisymmetric and simple shear loading conditions for initially
spherical voids in an attempt to validate the present model by comparison with existing numerical
and approximate results in the literature. Finally, we study the possible development of macroscopic
instabilities for the special case of ideally-plastic solids subjected to plane-strain loading conditions.
The results, reported in this paper, suggest that the present model improves dramatically on the earlier
“variational” estimates, in particular, because it generates much more accurate results for high triaxiality
loading conditions.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

In the first part of this paper (Danas and Ponte Castañeda,
2009), henceforth referred to as Part I, we have proposed an ap-
proximate model for the determination of the instantaneous ef-
fective behavior and microstructure evolution in anisotropic vis-
coplastic porous materials subjected to general loading conditions.
The new model is based on the nonlinear “second-order” homog-
enization method of Ponte Castañeda (2002a), where a certain
“reference” stress tensor is chosen to recover exactly the behav-
ior of a “composite-sphere assemblage” in the limit of hydrostatic
loadings, therefore coinciding with the hydrostatic limit of the Gur-
son’s criterion in the special case of ideal plasticity. The new model
has also been extended, in an approximate manner, to take into
account general “ellipsoidal” microstructures (i.e., orthotropic sym-
metry of the material) and three-dimensional loading conditions.
The internal variables characterizing the microstructure have been
denoted by the set

sα = {
f , w1, w2,n(1),n(2),n(3) = n(1) × n(2)

}
, (1)
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where f is the porosity, w1 = a3/a1 and w2 = a3/a2 are the two
aspect ratios defining the shape of the ellipsoidal void (with a1, a2
and a3 denoting the principal semi-axes of the ellipsoidal voids),
while the vectors n(i) (with i = 1,2,3) denote the orientation of
the principal axes of the voids.

In the present paper, the new model is applied to various load-
ing conditions and is compared to other models and available nu-
merical results. More specifically, this study is divided in two main
parts. The first part involves the study of the instantaneous effec-
tive response of porous materials for a given microstructural and
loading configuration, and is detailed in Section 2. The porous me-
dia under study consist of ellipsoidal voids, whose principal axes
can be aligned or misaligned with the principal loading directions.
The new model is compared with available estimates by the “vari-
ational” method of Ponte Castañeda (1991), Ponte Castañeda and
Zaidman (1994), Kailasam and Ponte Castañeda (1998), Aravas and
Ponte Castañeda (2004), which is also valid for general ellipsoidal
microstructures and loading conditions, and the recently proposed
Flandi and Leblond (2005a, 2005b) model, which is valid only for
spheroidal voids, but has been heuristically extended to predict the
instantaneous response (but not the evolution of microstructure)
for arbitrary stress loadings. In addition, comparisons of the above
models with numerical results for the special cases of spherical
and cylindrical voids corresponding to isotropic and transversely
isotropic microstructures, respectively, have already been given in
Danas et al. (2008b) and Danas et al. (2008a, 2008c) and will not
be repeated here. In particular, the results for the isotropic case
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show an interesting dependence on the third invariant (i.e., on the
Lode angle).

In turn, the second part of this paper (Sections 3–5) is devoted
to the study of microstructure evolution in porous media with
initially spherical voids. In this part, we compare the estimates
of this new model with the “variational” estimates (Ponte Cas-
tañeda and Zaidman, 1994; Kailasam and Ponte Castañeda, 1998;
Aravas and Ponte Castañeda, 2004), the Flandi and Leblond (2005b)
model and unit-cell finite element calculations for axisymmetric
loading conditions and initially spherical voids. In addition, we
consider simple shear loading in Section 4 leading to rotation of
the voids and therefore of the anisotropy axes. Finally, we apply
the present model to analyze the possible development of shear
localization in ideally plastic solids under plane-strain loading con-
ditions. It is emphasized that the “second-order” and the “varia-
tional” methods are the only available methods in the literature
that are capable of providing estimates for the effective behav-
ior and microstructure evolution under general (e.g., non-aligned)
loading conditions leading to general ellipsoidal microstructures as
the deformation progresses. Additional examples have been con-
sidered in Danas (2008).

2. Instantaneous effective behavior

The main objective of this section is to study the instantaneous
effective behavior of anisotropic porous materials in the simplest
possible way. In general, the behavior of such materials depends
on all microstructural variables sa , as well as on all six components
of the macroscopic stress tensor σ . However, for simplicity, we will
consider fully triaxial loading (i.e., the principal loading directions
coinciding with the laboratory frame of reference), while letting
the microstructure be aligned or misaligned with these principal
directions.

In the presentation of the results, use of the gauge surface will
be made. It is useful to recall that the gauge surface generalizes
the notion of the yield surface in the context of viscoplastic ma-
terials and has been detailed in Section 2.3 of Part I (not repeated
here). For completeness and conciseness, it is useful to note that
the gauge function is defined in terms of the gauge factor Γn via

Φ̃n(Σ; sα) = Γn(Σ; sα) − 1, (2)

such that the condition Φ̃n = 0 defines the corresponding gauge
surface in the space of the normalized second-order stress ten-
sors Σ = σ /Γn(σ ) (see relation (9) of Part I). In the following,
we present certain cross-sections of this gauge surface for several
microstructural and loading configurations to be discussed below.
Note further that the subscript n (m = 1/n is the strain-rate sensi-
tivity parameter) refers to the nonlinear exponent associated with
the matrix phase (see relation (1) of Part I). The two limiting val-
ues n = 1 (or m = 1) and n → ∞ (or m = 0) correspond to linear
and ideally-plastic behaviors, respectively.

Loading configuration. Let the principal directions of the
macroscopic stress tensor σ , or, equivalently, Σ , be aligned with a
fixed Cartesian laboratory frame of reference defined by the three
unit vectors e(i) (with i = 1,2,3). Then, the normalized macro-
scopic stress tensor Σ can be represented in terms of its three
principal values Σ1, Σ2, Σ3, or, equivalently, in terms of the prin-
cipal values of the deviatoric stress tensor, i.e., Σ ′

1, Σ ′
2, Σ ′

3 (with
Σ ′

1 + Σ ′
2 + Σ ′

3 = 0) and the mean stress Σm , via

Σ = Σmδ + Σeq S

= Σmδ + Σ ′
1e(1) ⊗ e(1) + Σ ′

2e(2) ⊗ e(2) + Σ ′
3e(3) ⊗ e(3). (3)

The stress quantities Σm = Σ1 + Σ2 + Σ3 and Σeq =
√

3Σ ′ · Σ ′/2
are the normalized macroscopic mean and von Mises equivalent
stress measures, respectively, while δ is the identity, S = σ ′/σ eq =
Σ ′/Σeq is a normalized stress tensor and Σ ′ is the stress deviator.

Making use of the previous notation and following the work of
(Danas et al., 2008b), we define the stress quantities

XΣ = Σm

Σeq
, cos(3θ) = 27

2
det(S). (4)

The first is the stress triaxiality, and the second is the Lode angle
(Kachanov, 1971) in stress space, which is related to the deter-
minant of the macroscopic deviatoric stress tensor Σ ′ and lies
between 0 � θ < 2π . The values θ = Nπ/3 and θ = (2N + 1)π/6,
with N (< 6) being a positive integer, correspond to axisymmetric
and simple shear loading conditions, respectively. It is important
to emphasize that if the porous medium is anisotropic (which is
the case in this work), the effective behavior of the material will
be different for the various values of the integer N . Relation (4)2
may then be inverted so that, relative to its principal axes, S is
represented in terms of the Lode angle θ through

S = 2

3
diag

{
−cos

(
θ + π

3

)
,− cos

(
θ − π

3

)
, cos(θ)

}
. (5)

In view of definition (2), it is convenient to define two cross-
sections of the gauge surface of the porous material. One cross-
section may be defined by considering θ = const. This cross-section
lies on a plane which is described by the Cartesian coordinates Σeq

and Σm , and is also known as the meridional plane.
An alternative cross-section of the gauge surface may be con-

sidered on a plane defined by a constant hydrostatic pressure, i.e.
Σm = const. This projection is equivalent to the standard deviatoric
Π -plane (or else octahedral plane) in the theory of plasticity. The
polar coordinates on this plane are r = √

2/3Σeq and the Lode an-
gle θ , respectively. For convenience, in-plane Cartesian coordinates
may also be defined (Lubliner, 1990) by using definitions (3) and
(5), such that

x = 2Σ3 − Σ1 − Σ2√
6

=
√

3

2
Σ ′

3 =
√

2

3
Σeq cos(θ),

y = Σ1 − Σ2√
2

= Σ ′
1 − Σ ′

2√
2

=
√

2

3
Σeq sin(θ). (6)

Microstructural configuration. The microstructural configura-
tions to be studied in this work are shown schematically in Fig. 1.
In case (a), we consider prolate spheroidal voids with aspect ra-
tios w1 = w2 = 5, whose major (symmetry) axis is aligned with
the n(3)-direction. The second configuration (b) involves oblate
spheroidal voids with aspect ratios w1 = w2 = 0.2, whose mi-
nor (symmetry) axis is aligned with the n(3)-direction. The third
case (c) concerns ellipsoidal voids with two different aspect ratios
w1 = a3/a1 = 5 and w2 = a3/a2 = 0.2, whose major axis is aligned
with the n(2)-direction and the minor axis with n(1)-direction. This
last case has been introduced to emphasize the importance of hav-
ing a model that is capable of handling ellipsoidal microstructures
that are more general than the spheroidal microstructures (i.e.,
voids having one circular cross-section).

The principal directions of the voids, i.e., n(i) , need not be
aligned with the principal loading directions e(i) . In this case,
the overall behavior of the composite is expected to exhibit gen-
eral anisotropy and such cases are considered in the following.
In order to describe the orientation of the principal axes of the
voids n(i) with respect to the fixed loading directions e(i) , we em-
ploy the standard notation that has been widely used to describe
the slip direction of single crystals (Miller indices in crystallogra-
phy). In this connection, the notation n(1) = [0 1 1], implies that
n(1) = 0e(1) + 1/

√
2e(2) − 1/

√
2e(3) .
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Fig. 1. Void shapes in the frame of reference defined by the vectors n(i) which correspond to the orientation of the principal axes of the voids. Three configurations are
considered: (a) prolate voids with aspect ratios w1 = w2 = 5, (b) oblate voids with aspect ratios w1 = w2 = 0.2 and (c) ellipsoidal voids with aspect ratios w1 = 5 and
w2 = 0.2.
2.1. Meridional planes for aligned microstructures

This subsection deals with the determination of the instanta-
neous effective behavior of porous materials consisting of voids
with prolate, oblate or ellipsoidal shapes, as shown in Fig. 1, whose
principal axes n(i) (i = 1,2,3) coincide with the principal loading
directions and therefore with e(i) (i = 1,2,3), such that n(i) = e(i) .
Consequently, the instantaneous response of the porous medium
is, in general, orthotropic, while the axes of orthotropy coincide
with the principal loading directions e(i) .

Then, let these materials be subjected to two types of loading
conditions, which are expressed according to (3) and (5) by

Σ = Σmδ + T

3

(−e(1) ⊗ e(1) − e(2) ⊗ e(2) + 2e(3) ⊗ e(3)
)
, (AXS) (7)

and

Σ =
⎧⎨⎩

Σmδ + T /
√

3(e(1) ⊗ e(1) − e(2) ⊗ e(2)), (P S12)

Σmδ + T /
√

3(e(1) ⊗ e(1) − e(3) ⊗ e(3)), (P S13)

Σmδ + T /
√

3(e(2) ⊗ e(2) − e(3) ⊗ e(3)), (P S23).

(8)

In the above expressions, Σm denotes the mean stress, while
T = ±Σeq , such that the corresponding stress triaxiality reduces
to XΣ = Σm/|T |. The first of the two stress states, given by (7),
is an axisymmetric loading, denoted as A X S , with the maximum
(absolute) stress component in the 3-direction. The second set of
stress states given by (8) is a combination of in-plane 1–2, 1–3
and 2–3 shear loadings with superimposed pressure Σm , denoted
as P S12, P S13 and P S23, respectively.

Note further that when an axisymmetric loading of the form
(7) is applied in the case of prolate or oblate voids (see Fig. 1a,
b), whose symmetry axis is aligned with the maximum absolute
principal stress, the composite exhibits a transversely isotropic re-
sponse about the 3-axis, provided that the behavior of the matrix
phase is isotropic. Those two microstructural states, i.e., prolate
and oblate voids together with the loading condition (7) have also
been studied by Flandi and Leblond (2005a, 2005b) (FL) in their
model and their estimates will be included in this study for com-
parison with the corresponding “second-order” (SOM) predictions.
For completeness, we will also include corresponding numerical
(NUM) results obtained by Flandi and Leblond (2005b) for a con-
focal spheroidal volume element subjected to the axisymmetric
loading conditions (7). These results were obtained via numerical
minimization of the macroscopic viscous potential over a family of
trial velocity fields especially adapted to the spheroidal geometry
according to the work of Lee and Mear (1992).

On the other hand, when the second set of loading conditions
(8) is considered, the porous medium exhibits orthotropic behav-
ior. For this last case, Flandi and Leblond have proposed an exten-
sion of their model to arbitrary stress states. However, such results
will only be shown in Section 2.2, for the effective behavior of the
porous medium on the Π -plane. Finally, when the void is ellip-
soidal in shape (see Fig. 1c) with two different aspect ratios, the
porous material exhibits orthotropic response and hence, only the
SOM model will be shown for this case.

Due to the fact that the porous material is in general or-
thotropic, different loading conditions with the same stress triaxi-
ality XΣ result in different effective behaviors. In this connection,
there are two questions that need to be answered. The first one
is related to the effect of the void shape on the effective behav-
ior of the porous medium for a given loading. The second question
is linked to the effect of the loading on the effective behavior of
the porous material for a given void shape. An attempt to provide
answers to these two questions will be made in the following.

Fig. 2 shows gauge curves, as predicted by the SOM and FL
models, as well as the numerical spheroidal shell NUM results,
on the meridional plane Σm–T , for a porous material consisting
of (a) prolate voids with w1 = w2 = 5 and (b) oblate voids with
w1 = w2 = 0.2 (see Fig. 1a,b) subjected to the axisymmetric load-
ing conditions defined by (7), while the nonlinear exponent of the
matrix phase is n = 5 (or m = 0.2). For prolate voids, in Fig. 2a, the
SOM and the FL estimates are found to be in good agreement with
the NUM results for all the porosities f = 0.1,1,10% considered.
On the other hand, for oblate voids in Fig. 2b, the SOM and the
FL models give somewhat different estimates, especially near the
purely hydrostatic loading (i.e., T → 0), where the SOM is found to
be more conservative (i.e., softer) than the corresponding FL esti-
mate, when compared with the NUM results. This difference may
be partially attributed to the approximation introduced in the con-
text of the SOM for the computation of the hydrostatic point, in
Section 2.4 in Part I of this work. On the other hand, it should be
emphasized that the NUM results are associated with a confocal
spheroidal shell, where the shapes of the inner and outer surfaces
can be quite different at the larger porosities. Because of this, the
comparison of the NUM results with the SOM predictions becomes
inappropriate at large porosities (recall that the shape of the voids
and the distribution has been assumed to be the same in the SOM,
for simplicity).

Fig. 3 shows corresponding SOM gauge curves for spheroidal
and ellipsoidal voids with aspect ratios w1 = w2 = 5 (prolate),
w1 = w2 = 0.2 (oblate) and w1 = 5, w2 = 0.2 (general ellipsoid)
for a nonlinear exponent n = 5 (or m = 0.2) and porosity f = 5%.
In part (a) of this figure, which corresponds to axisymmetric load-
ing (cf. (7) denoted as A X S), the effective behavior of the porous
material is found to be substantially different for all three mi-
crostructures considered here. The porous medium with ellipsoidal
voids (w1 = 5, w2 = 0.2) is softer than the one with oblate voids
(w1 = w2 = 0.2) for stress states lying in the second (T > 0 and
Σm < 0) and the fourth (T < 0 and Σm > 0) quadrant, while it
is significantly softer than the corresponding medium with pro-
late voids (w1 = w2 = 5) for all stress states shown in this figure.
This implies that the effective gauge curves associated with ellip-
soidal voids cannot be approximated by corresponding curves for
spheroidal voids, as intuitively expected.
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Fig. 2. SOM, Flandi and Leblond (2005a, 2005b) (FL) and numerical spheroidal shell (NUM) gauge surfaces on the Σm–T plane for spheroidal voids (w1 = w2) that are
subjected to axisymmetric loading conditions (cf. (7)) aligned with the pore symmetry axis. The matrix phase is described by an exponent n = 5, while three values of
porosity, f = 0.1,1,10% are used. The plots correspond to (a) w1 = w2 = 5 (prolate voids), and (b) w1 = w2 = 0.2 (oblate voids).

Fig. 3. SOM gauge surfaces on the Σm–T plane for porous media with (a) prolate (w1 = w2 = 5), oblate (w1 = w2 = 0.2) and ellipsoidal (w1 = 5, w2 = 0.2) voids subjected
to axisymmetric (cf. (7)) loadings and (b) for ellipsoidal (w1 = 5, w2 = 0.2) voids subjected to in-plane shear with superimposed pressure (cf. (8)) loading conditions. The
matrix phase is described by an exponent n = 5, while the porosity is f = 5%.
In Fig. 3b, we present gauge curves only for ellipsoidal voids
with w1 = 5 and w2 = 0.2 subjected to in-plane shear with su-
perimposed pressure loadings (cf. (8)). Because of the orthotropic
symmetry of the material, the plane of shear, i.e., 1–2 plane (P S12)
or 1–3 plane (P S13) or 2–3 plane (P S23) has significant effects
on the effective response of the porous medium. While the P S23
curve appears to be slightly asymmetric about the T -axis, the
P S12 curve exhibits a significant hardening in the second (T > 0
and Σm < 0) and fourth (T < 0 and Σm > 0) quadrant. In ad-
dition, it should be noted that the corresponding curve for el-
lipsoidal voids in part (a) of this figure for AXS loading is sig-
nificantly different than the ones in part (b) for in-plane shear
loadings. This implies that the type of loading has significant ef-
fects on the macroscopic behavior of the porous medium. On
the other hand, we emphasize that all the gauge curves associ-
ated with a given microstructural configuration—for instance el-
lipsoidal voids with w1 = 5 and w2 = 0.2—coincide in the purely
hydrostatic limit (T = 0), as they should. Nonetheless, the slope
of these curves, which is directly related to the direction of the
flow, can be significantly different for the various loading condi-
tions.
2.2. Deviatoric planes for anisotropic porous media

In this subsection, we present cross-sections of the gauge sur-
faces on the Π -plane (deviatoric or octahedral plane). As already
pointed out in the beginning of this section, we assume that the
principal directions of the macroscopic stress tensor coincide with
the Cartesian frame of reference defined by the three orthonor-
mal vectors e(i) with i = 1,2,3. The cross-sections of the gauge
surface on the Π -plane are defined by imposing a constant pres-
sure Σm = const and prescribing the in-plane Cartesian coordinates
(6). For the results shown below, we choose a constant pressure
Σm = 0.9Σ H

m , with Σ H
m = Σ H

m|som denoting the mean stress deliv-
ered by the SOM method for purely hydrostatic loading and a given
microstructural configuration (see Appendix B of Part I).

The SOM results are shown for (i) prolate voids with aspect ra-
tios w1 = w2 = 5, (ii) oblate voids with aspect ratios w1 = w2 =
0.2 and (iii) ellipsoidal voids w1 = 5 and w2 = 0.2. In addition,
the principal axes of the voids are allowed to be misaligned with
respect to the principal loading directions. For convenience, the
following figures are labeled according to Table 1, which indicates
the orientation of the principal axes of the voids, n(i) , with respect
to the fixed unit vectors e(i) . The relevant notation used in Table 1
has already been discussed at the end of Section 2. In the final
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Table 1
Orientation of the principal axes of the voids.

Prolate Oblate Ellipsoid

Cases n(1) n(2) n(3) Cases n(1) n(2) n(3) Cases n(1) n(2) n(3)

1p – – [0 0 1] 1o – – [0 0 1] 1e [1 0 0] [0 1 0] [0 0 1]
2p – – [0 1 0] 2o – – [0 1 0] 2e [0 0 1] [1 0 0] [0 1 0]
3p – – [1 0 0] 3o – – [1 0 0] 3e [0 1 0] [0 0 1] [1 0 0]
4p – – [0 1 1] 4o – – [0 1 1] 4e [1 0 0] [0 1 1] [0 1 1]
5p – – [1 1 0] 5o – – [1 1 0] 5e [0 0 1] [1 1 0] [1 1 0]
6p – – [1 0 1] 6o – – [1 0 1] 6e [0 1 0] [1 0 1] [1 0 1]
7p – – [0 3 4] 7o – – [0 3 4] – – – –

part of this subsection, we compare the SOM estimates with cor-
responding estimates obtained by the “variational” method (VAR)
of Ponte Castañeda (1991) and the Flandi and Leblond (2005a) (FL)
model (see Appendix B of the relevant work), which is valid only
for spheroidal voids, i.e., prolate and oblate shapes.

It should be further emphasized that the prolate and oblate
voids have a circular cross-section in the plane defined by the unit
normal n(3) , which implies that the direction of the symmetry axis
(taken here in the n(3)-direction such that w1 = w2) completely
defines the orientation of the voids with respect to the fixed frame
of reference. For this reason, in the first two cases of spheroidal
voids, Table 1 provides information only about the orientation of
the pore symmetry axis n(3) relative to the base vectors e(i) . By
contrast, in the context of ellipsoidal voids (w1 �= w2), it is not
sufficient to prescribe only the orientation of the major axis of the
voids, which is taken to be aligned with n(2) in this work (with
w1 = 5 and w2 = 0.2), but it is also necessary to provide addi-
tional information about the orientation of the minor and middle
axis, which are aligned with n(1) and n(3) , respectively. In the fig-
ures to follow, the various cases presented in Table 1, are labeled
according to the subscript (p) for prolate, (o) for oblate and (e) for
ellipsoidal voids.

Prolate voids. Fig. 4 shows SOM gauge curves on the Π -plane
for a porous material consisting of prolate voids with aspect ra-
tios w1 = w2 = 5. The continuous (and dashed) symmetry lines on
the graph correspond to the three axisymmetric loading conditions
aligned with the three axes of the laboratory frame of reference.
Fig. 4a shows results for prolate voids whose principal axes are
aligned with the principal loading directions. According to Table 1,
the 1p , 2p and 3p curves correspond to prolate voids, whose major
(symmetry) axis is aligned with the e(3) , e(2) and e(1) directions,
respectively.
As already expected, the form of the gauge curves is identi-
cal for these three cases. Note that the 2p and 3p curves can be
obtained by 2π/3 and 4π/3 clockwise rotation of the 1p curve
about the origin. In addition, due to the spheroidal symmetry of
the microstructure, the 1p , 2p and 3p curves are symmetric about
the Σ ′

3-, Σ ′
2- and Σ ′

1-axis, respectively. A second important ob-
servation is linked to the fact that when axisymmetric loading
conditions are considered transverse to the pore symmetry axis
(e.g., look at 1p curve when it crosses the positive Σ ′

2-axis), the
effective behavior of the material is significantly softer than in the
case of axisymmetric loading along the pore symmetry axis (e.g.,
look at 1p curve when it crosses the positive Σ ′

3-axis).
Fig. 4b shows gauge curves for porous media containing pro-

late voids whose principal axes are misaligned with the principal
loading directions. According to Table 1, the curves 4p , 5p and
6p correspond to the cases that the major (symmetry) axis of the
voids lies in the 2–3, 1–3 and 1–2 planes, respectively. Similar to
the curves in part (a) of this figure, the 5p and 6p estimates can
be obtained by 2π/3 and 4π/3 clockwise rotation of the 4p curve
about the origin. In addition, the 4p , 5p and 6p curves are symmet-
ric about the Σ ′

1-, Σ ′
3- and Σ ′

2-axis, respectively. This is a direct
consequence of the specific choice for the orientation of the sym-
metry axis of the voids relative to the principal loading directions.
Note that the effective behavior of a porous medium with pro-
late voids, whose symmetry axis is not aligned with the principal
loading directions, is, in general, anisotropic and thus no symmetry
of the gauge surface on the Π -plane should be expected. Indeed,
Fig. 4c verifies this observation, where we chose to show the 7p
gauge curve corresponding to prolate voids aligned in the direc-
tion [034].

Oblate voids. Fig. 5 shows the corresponding SOM gauge curves
on the Π -plane for a porous material consisting of oblate voids
with aspect ratios w1 = w2 = 0.2. As before, the continuous (and
dashed) symmetry lines on the graph correspond to the three ax-
isymmetric loading conditions aligned with the laboratory frame
of reference. Fig. 5a shows gauge curves for porous media con-
taining oblate voids whose minor (symmetry) axis is aligned with
the principal loading directions. In accord with Table 1, the curves
1o , 2o and 3o correspond to the cases that the symmetry axis of
the voids is aligned with the e(3) , e(2) and e(1) direction, respec-
tively. Due to the spheroidal symmetry of the microstructure, the
corresponding 1o , 2o and 3o curves are symmetric about the Σ ′

3-,
Σ ′

2- and Σ ′
1-axis, respectively. Furthermore, the 2o and 3o curves

can be obtained by 2π/3 and 4π/3 clockwise rotation of the 1p
Fig. 4. SOM cross-sections of the gauge function on the Π -plane (or octahedral plane) for porous media consisting of prolate voids with aspect ratios w1 = w2 = 5, porosity
f = 5% and nonlinearity n = 5. The relevant graphs correspond to the cases that the pore symmetry axis is (a) aligned (1p–3p ) and (b)–(c) misaligned (4p –7p ) with the
principal directions of the loading. The cases 1p –7p are defined in Table 1.
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Fig. 5. SOM cross-sections of the gauge function on the Π -plane (or octahedral plane) for porous media consisting of oblate voids with aspect ratios w1 = w2 = 0.2, porosity
f = 5% and nonlinearity n = 5. The relevant graphs correspond to the cases that pore symmetry axis is (a) aligned (1o–3o ) and (b)–(c) misaligned (4o–7o ) with the principal
directions of the loading. The cases 1o–7o are defined in Table 1.

Fig. 6. Cross-sections of the gauge function on the Π -plane (or octahedral plane) for porous media consisting of ellipsoidal voids with aspect ratios w1 = 5 and w2 = 0.2,
porosity f = 5% and nonlinearity n = 5. The relevant graphs correspond to the cases that the principal directions of the void are (a) aligned (1e–3e ) and (b) misaligned
(4e–6e ) with the principal directions of the loading. The cases 1e–6e are defined in Table 1.
curve about the origin. Nonetheless, the curves for oblate voids
are significantly different in shape than the ones for prolate voids
(Fig. 4a).

Fig. 5b shows gauge curves for porous materials consisting of
oblate voids whose symmetry axis is misaligned with the princi-
pal loading directions. The curves 4o , 5o and 6o correspond to the
cases that the symmetry axis of the voids lies in the 2–3, 1–3 and
1–2 plane, as described in Table 1. In this case, the porous medium
is still transversely isotropic about a direction that is not parallel to
any of the three principal loading directions and, thus, the shape
of the gauge curves is very different from those corresponding to
the cases 1o , 2o and 3o . Similar to the prolate case, the 4o , 5o and
6o curves are symmetric about the Σ ′

1-, Σ ′
3- and Σ ′

2-axis, respec-
tively, whereas the 5o and 6o curves can be obtained by 2π/3 and
4π/3 clockwise rotation of the 1p curve about the origin. How-
ever, this is only due to the specific choice for the orientation of
the symmetry axis of the voids relative to the principal loading di-
rections. As already remarked in the context of prolate voids, when
the pores are misaligned with the principal loading directions, the
corresponding gauge curve is expected to exhibit no symmetry on
the Π -plane. This is easily verified by showing in Fig. 5c the case
7o of oblate voids whose symmetry axis is aligned in the direction
[034].

Ellipsoidal voids. Fig. 6 shows SOM gauge curves for porous
materials consisting of ellipsoidal voids with aspect ratios w1 = 5
and w2 = 0.2. In this case, the behavior of the material is or-
thotropic in a frame of reference defined by the orientation vectors
of the principal axes of the voids, i.e., n(i) (with i = 1,2,3). Unlike
the previous two configurations involving spheroidal voids, in this
case, it is necessary to describe the orientation of all three (or at
least two) orientation vectors n(i) (with i = 1,2,3) with respect
to the unit vectors e(i) (with i = 1,2,3). Table 1 includes the six
cases 1e–6e shown in this figure. More specifically, Fig. 6a presents
gauge curves for voids whose principal axes are aligned with the
principal loading directions. The main observation in the context
of this figure is that the gauge curves 1e , 2e and 3e do not ex-
hibit any symmetry in contrast to the two previous cases involving
spheroidal pore shapes. Nevertheless, these curves are all identi-
cal in shape, whereas the 2e and 3e estimates can be reproduced
by 2π/3 and 4π/3 clockwise rotation of the 1e estimate about the
origin.

Fig. 6b shows corresponding curves for ellipsoidal voids whose
principal axes are misaligned with the principal loading directions.
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Fig. 7. Comparison of SOM, VAR and FL results for voids with aspect ratios equal to (a) w1 = w2 = 5 (prolate), (b) w1 = w2 = 0.2 (oblate) and (c) w1 = 5, w2 = 0.2
(ellipsoids). The cases 1p , 1o and 1e are defined in Table 1.
As a consequence, the shape of the 4e , 5e and 6e curves is substan-
tially different from the ones shown in part (a) of this figure. In the
context of Fig. 6b note that the 4e , 5e and 6e curves are symmetric
about the Σ ′

1-, Σ ′
3- and Σ ′

2-axis, respectively. This is in contrast
with the corresponding curves in part (a) of this figure. This “unex-
pected” behavior can be explained by noting, for instance, that the
4e curve corresponds to an ellipsoidal void whose major (n(2)) and
minor (n(3)) principal axes were formed by a 45◦ rotation of the
base vectors e(2) and e(3) , respectively, about the 1-axis leading to
a certain symmetry of the material in the 2- and 3-direction. The
cases 5e and 6e can be explained similar to the case 4e .

All models. In Fig. 7, we reproduce the SOM results for the
cases 1p , 1o and 1e , and compare them with VAR gauge curves. In
addition, we include results obtained by the extended FL (Flandi
and Leblond, 2005a) model, which is valid only for spheroidal
voids.

Fig. 7a shows SOM, VAR and FL gauge curves on the Π -plane
for a porous medium consisting of prolate voids with aspect ra-
tios w1 = w2 = 5, whose symmetry axis is aligned with the e(3)-
direction (case 1p in Table 1). The main observation in the context
of this figure is that the VAR estimate is significantly stiffer than
both the SOM and FL method. In addition, the FL curve seems
to have an elliptical shape, similar to the elliptical shape of the
VAR curve, in contrast with the SOM which exhibits a markedly
non-elliptical shape being significantly flattened in certain direc-
tions. Nonetheless, all estimates are symmetric about the Σ ′

3-axis,
which is a consequence of the transversely isotropic response of
the porous medium under axisymmetric loading along the pore
symmetry axis, i.e., n(3) = e(3) .

Fig. 7b shows corresponding SOM, VAR and FL gauge curves on
the Π -plane for a porous medium consisting of oblate voids with
aspect ratios w1 = w2 = 0.2, whose major axis is aligned with the
e(3)-direction (case 1o in Table 1). Here, the VAR curve is found
to be significantly stiffer than the SOM and the FL curves, particu-
larly in the positive Σ ′

3-axis, while all estimates remain symmetric
about this axis due to the transversely isotropic symmetry of the
material. In addition, the FL curve is very similar with the VAR
curve, which has an elliptical shape, in contrast with the SOM
method, which exhibits a flattening across the positive Σ ′

3-axis.
Finally, Fig. 7c shows SOM and VAR gauge curves on the Π -

plane for a porous medium consisting of ellipsoidal voids with
aspect ratios w1 = 5 and w2 = 0.2, whose principal axes are ori-
ented according to the 1e case in Table 1. It is emphasized here
that the FL model cannot handle orthotropic microstructures (i.e.,
ellipsoidal voids with two different aspect ratios) and thus is not
included in this figure. It can be seen that the difference in the
shape between the SOM and the VAR estimates is significant. Due
to the orthotropic symmetry of the porous medium, the SOM curve
exhibits no symmetry, whereas the VAR curve remains elliptical,
which implies that it has two axes of symmetry. However, those
axes of symmetry do not coincide with the axes in the graph.

3. Viscoplasticity: Axisymmetric loading

In this section, we compare the present model (SOM) against
unit-cell finite element calculations (FEM) in order to show explic-
itly its improvement over the earlier “variational” estimates (VAR).
For simplicity in the FEM calculation, we consider only axisymmet-
ric loading conditions and initially spherical voids.1

For this special type of microstructure and loading conditions,
it is also meaningful to compare the SOM with the most recent
Flandi and Leblond (2005b) (FL) model, which is valid for axisym-
metric loading conditions, provided that during the deformation
process the voids remain spheroidal in shape. By contrast, it is em-
phasized that the SOM and VAR methods can also handle more
general loading conditions (Danas, 2008), such as simple shear
loadings presented in Section 4.

3.1. Loading conditions

The SOM and the VAR refer to random porous media, whereas
the FEM involves unit-cell calculations with periodic microstruc-
tures. Therefore, the comparison between the homogenization
methods (SOM and VAR) and the FEM is only meaningful for
small concentration of voids (near the dilute limit) (Gilormini
and Michel, 1998), where the distribution effects (i.e., random vs.
periodic microstructures) are negligible. In this regard, following
Koplick and Needleman (1988), Michel et al. (1999), Gǎrǎjeu et al.
(2000) and Klöcker and Tveergard (2003), we consider a cylindri-
cal unit-cell consisting of an initially spherical void (w1 = w2 = 1)
with initial porosity fo = 0.01%. This cell has been introduced as
an approximation to a unit-cell of a periodic array of cylindrical
cells with hexagonal cross-section.

1 The FEM calculations have been performed using the ABAQUS commercial pack-
age. A more detailed discussion of the FEM computations is provided in Danas
(2008).
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The unit-cell is subjected to axisymmetric loading conditions
such that the only non-zero components of the macroscopic stress
tensor σ are

σ = T (e(1) ⊗ e(1) + e(2) ⊗ e(2)) + Se(3) ⊗ e(3), (9)

so that S and T serve as the loading parameters in the prob-
lem. The stress triaxiality, defined in (4)1, can then be expressed
in terms of S and T as

XΣ = S + 2T

3|S − T | = S

|S|
1 + 2T /S

3|1 − T /S| . (10)

In the following applications, the stress triaxiality XΣ (or equiv-
alently the ratio T /S) is kept constant during the deformation
process. The values to be used are XΣ = ±1/3,±3, which cor-
respond to stress ratios T /S = 0,0.727 (with S ≶ 0), respectively.
Obviously for the values of T /S given previously, the sign of XΣ

depends on the sign of S . Note that the values XΣ = ±1/3 corre-
spond to uniaxial tension (+) and compression (−), respectively.
On the other hand, the values XΣ = ±3 represent high triaxiality
loadings.

In order to maintain the stress triaxiality constant in the FEM
calculations, we have used two different methods: we applied (a)
constant traction together with periodic boundary conditions and
(b) displacement periodic boundary conditions in an implicit form
such that the stress triaxiality is kept constant. Both approaches
predicted the same results for the cases discussed below. On the
other hand, numerical problems started occurring at high nonlin-
earities, i.e., for n > 10. For this reason, we do not include results
for the ideally-plastic case where the FEM calculations are mesh-
dependent, particularly when strain hardening is not included and
the material is prone to strong localization.

As a consequence of the axisymmetric loading, the initially
spherical voids evolve into spheroidal ones with prolate or oblate
shape, whereas their principal axes remain fixed during the de-
formation process (leading to transversely isotropic symmetry for
the material). This implies that the two aspect ratios are equal, i.e.,
w1 = w2 = w and the principal axes of the voids coincide with the
principal loading directions, i.e., n(i) = e(i) (i = 1,2,3). For con-
venience with the notation, henceforth, we will make use of the
aspect ratio w to denote the change in the shape of the spheroidal
voids. The cases w = 1, w > 1 and w < 1 correspond to spherical,
prolate and oblate voids, respectively. At this point, it should be
noted that in the FEM calculations the void does not preserve an
ellipsoidal shape during the deformation process, especially at high
nonlinearities and large deformations. Therefore, the “principal ax-
es” of the void can only be defined in approximate terms. In the
present work, w is computed by the ratio of the lateral and hor-
izontal axes of the void (see Danas (2008) for more details). This
procedure has been found to be sufficiently accurate for most of
the loadings considered in the following except in some degener-
ate cases where special reference will be made.

Due to the alignment of the loading (9) with the pore symme-
try axis, the resulting macroscopic strain-rate D is also axisym-
metric, i.e., D11 = D22 �= 0, D33 �= 0 and Dij = 0 for i �= j. Using
this fact, it is useful to introduce the axial and equivalent macro-
scopic strain measures, ε33 and εeq , respectively, given by

ε33 =
t∫

0

D33 dt, εeq = 2

3

t∫
0

|D33 − D11|dt, (11)

which serve as time-like variables. For later use, it is also pertinent
to define the equivalent strain-rate ε̇∞

eq in the absence of voids,
which reads

ε̇∞
eq = ε̇o

(
σ eq

σo

)n

. (12)

In this expression, σo is the flow stress of the matrix phase and ε̇o

is a reference strain-rate taken in the following calculations equal
to unity.

Finally, several nonlinear exponents are used, i.e., n = 1,2,4,10.
It should be recalled that the values n = 1 and n = 10 correspond
to a linear and strongly nonlinear viscoplastic material, respec-
tively. The effect of the stress triaxiality XΣ and the nonlinearity n
on the evolution of the microstructural and macroscopic variables
is studied in detail in the following subsections.

3.2. Tensile loadings: comparison among several models

Uniaxial tension loading with XΣ = 1/3 (or T /S = 0 with S >

0). In Fig. 8, we consider a uniaxial tension loading, where the
relevant evolution variables are shown as a function of the axial
strain ε33 for a nonlinearity n = 10. The main feature of this load-
ing predicted by all estimates shown in Fig. 8a is that the porosity
f / fo grows initially but it approaches an asymptote for sufficiently
large strains (Ponte Castañeda and Zaidman, 1994; Benzerga, 2002;
Lassance et al., 2007). Here, the SOM is in much better agreement
with the FEM predictions than the FL and the VAR models. On the
other hand, in Fig. 8b, the SOM overestimates the evolution of the
aspect ratio w , while the FL method is in very good agreement
with the FEM results. The VAR method underestimates the evo-
lution of w , as already anticipated. Looking at Fig. 8c, the SOM
Fig. 8. SOM, FEM, FL and VAR curves for the evolution of (a) the normalized porosity f / fo ( fo = 0.01%), (b) aspect ratio w and (c) the normalized axial strain-rate D33/ε̇∞
eq

(ε̇∞
eq is the corresponding strain-rate in the absence of voids) for a nonlinear exponent n = 10 under uniaxial tension loading (XΣ = 1/3 and T /S = 0 with S > 0).
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Fig. 9. SOM, FEM, FL and VAR curves for the evolution of (a) the normalized porosity f / fo ( fo = 0.01%), (b) aspect ratio w and (c) the normalized equivalent strain-rate
Deq/ε̇

∞
eq (ε̇∞

eq is the corresponding strain-rate in the absence of voids) for nonlinear exponents n = 10 under triaxial tension loading (XΣ = 3 and T /S = 0.727 with S > 0).
estimates for the normalized axial strain-rate D33/ε̇
∞
eq improve sig-

nificantly on the VAR results, being in very good agreement with
the FEM predictions. In contrast, the FL method exhibits a some-
what different qualitative behavior from the FEM and the SOM
results.

Triaxial tension loading with XΣ = 3 (or T /S = 0.727 with
S > 0). In Fig. 9 the relevant evolution variables are shown as a
function of the macroscopic equivalent strain εeq for a nonlinearity
n = 10. In part (a) of this figure, both the SOM and FEM, which are
found to be in very good agreement, predict a very rapid increase
of the normalized porosity f / fo . In contrast, the FL estimate, al-
though showing a rapid increase of f / fo , it tends to underestimate
the evolution of the porosity. Note that the corresponding VAR es-
timate for f / fo is way off. In turn, in Fig. 9b, the aspect ratio w
evolves insignificantly, taking values close to unity, i.e., the voids
remain roughly spherical in shape for this high triaxiality load-
ing. However, it is interesting to note that at this high nonlinearity
(n = 10) the void elongates in the direction transverse to the max-
imum principal stress (see that w < 1), as predicted by the FEM
results. In other words, the initially spherical void evolves into an
oblate void. This interesting effect has initially been observed by
Budiansky et al. (1982) and Fleck and Hutchinson (1986) in the
dilute case. Such an effect is a direct consequence of the nonlin-
earity of the matrix phase and the high triaxiality loading, which
induce a certain distribution of strains around the void resulting in
this unexpected phenomenon. This effect is captured qualitatively
by the FL model, whereas the SOM and VAR estimates predict that
the void becomes slightly prolate (w > 1) in shape.

Even though the SOM does not predict accurately the evolu-
tion of w , it remains in good agreement with the FEM results,
certainly better than the FL estimates, for the evolution of the
equivalent macroscopic strain-rate Deq/ε̇

∞
eq . In contrast, the VAR

method severely underestimates the evolution of the porosity f / fo

and as a consequence fails to capture accurately the evolution of
the normalized macroscopic strain-rate Deq/ε̇

∞
eq and therefore the

effective response of the porous medium. In this regard, the main
conclusion in the context of this high triaxiality loading is that the
evolution of the porosity f / fo is predominant over the evolution
of the aspect ratio w , hence controlling the overall behavior of the
composite. The improvement of the SOM over the VAR estimates
for this high triaxiality loading is attributed to the fact that the
SOM is constructed such that it recovers the analytical CSA (com-
posite sphere assemblage) result in purely hydrostatic loading, in
contrast with the VAR method, which is too stiff in this case (see
Section 3.4 in Part I of this work).
3.3. Compressive loadings: comparison among several models

Uniaxial compression loading with XΣ = −1/3 (or T /S = 0
with S < 0). In Fig. 10, we consider uniaxial compression load-
ing conditions with a nonlinear exponent n = 10. Part (a), provides
comparisons of the various models for the evolution of the nor-
malized porosity f / fo as a function of the absolute macroscopic
axial strain |ε33|. The main observation in the context of this fig-
ure is that, while the SOM, the FL and the FEM predictions are
in good agreement during the whole deformation process (up to
the closure of the porosity), the VAR method overestimates signifi-
cantly the evolution of f / fo almost by ∼ 40%. On the contrary, in
Fig. 10b, all the methods exhibit the same qualitative behavior for
the evolution of the aspect ratio w . Nonetheless, they progressively
deviate from each other, with the VAR estimate delivering the high-
est values for w . It should be mentioned, here, that because of the
strong nonlinearity of the matrix phase the void shape in the FEM
calculation deviates significantly from being a spheroid develop-
ing contact zones at low values of f / fo . This suggests that spe-
cial numerical care needs to be taken in order to ensure material
impenetrability. Furthermore, the ratio between the “geometrical”
major and minor axes of the void does not constitute an appro-
priate measure of the aspect ratio w in this degenerate case (see
details on Section 3.5 in Danas (2008)). Since the main objective
of this work is to provide a qualitative and, if possible, a quan-
titative comparison to the SOM estimates, for simplicity, the FEM
calculations are terminated when the void develops these contact
zones.

Fig. 10c shows corresponding plots for the normalized macro-
scopic axial strain-rate |D33|/ε̇∞

eq . In this figure, the SOM and the
FEM predictions are in very good agreement, whereas the corre-
sponding FL results are found to be qualitatively different from the
previous two methods. The VAR method, in turn, underestimates
the evolution of |D33|/ε̇∞

eq as a consequence of the poor estima-
tion for the evolution of the porosity. It is worth noting that both
the SOM and the VAR estimates exhibit sharp increases in the es-
timate for |D33|/ε̇∞

eq , in contrast with the FL model which shows
a sharp decrease. In the first two cases of the SOM and VAR es-
timates, this sharp increase is linked to the rapid decrease of the
aspect ratio w , which is found to reduce faster than the normal-
ized porosity f / fo leading to the formation of cracks. The converse
is true for the FL model, whereas no definitive conclusions can be
drawn for the corresponding FEM curve due to the cut off point.

Triaxial compression loading with XΣ = −3 (or T /S = 0.727
with S < 0). Fig. 11 shows evolution plots for a stress triaxial-
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Fig. 10. SOM, FEM, FL and VAR curves for the evolution of (a) the normalized porosity f / fo ( fo = 0.01%), (b) aspect ratio w and (c) the normalized axial strain-rate |D33|/ε̇∞
eq

(ε̇∞
eq is the corresponding strain-rate in the absence of voids) for nonlinear exponents n = 10 under uniaxial compression loading (XΣ = −1/3 and T /S = 0 with S < 0).

Fig. 11. SOM, FEM, FL and VAR curves for the evolution of (a) the normalized porosity f / fo ( fo = 0.01%), (b) aspect ratio w and (c) the normalized equivalent strain-rate
Deq/ε̇

∞
eq (ε̇∞

eq is the corresponding strain-rate in the absence of voids) for nonlinear exponents n = 4 under uniaxial compression loading (XΣ = −3 and T /S = 0.727 with
S < 0).
ity XΣ = −3 as a function of the equivalent macroscopic strain
εeq for a nonlinear exponent n = 4. Fig. 11a shows the evolution
of the normalized porosity f / fo , where all (but the VAR) meth-
ods are in very good agreement. As already anticipated, for high
triaxialities the VAR method overestimates the evolution of the
porosity due to the overly stiff predictions for hydrostatic loadings.
In Fig. 11b, in turn, the various models deliver very different esti-
mates for the evolution of the aspect ratio w , with the FL model
being in qualitative agreement with the FEM results. This disagree-
ment between the various methods is due to the fact that the
void elongates in a direction parallel to the maximum compressive
principal stress taking a prolate shape (w > 1). This is a “local”
phenomenon that occurs at sufficiently high triaxialities and non-
linearities as already discussed in the context of Fig. 9b. However,
it is interesting to note that even though the SOM provides a poor
estimate for the aspect ratio w , it predicts with remarkable ac-
curacy the normalized macroscopic equivalent strain-rate Deq/ε̇

∞
eq

when compared with the corresponding FEM and FL results. This
apparent paradox can be easily explained by the fact that for high-
triaxiality loadings the evolution of porosity f / fo is so dramatic
that it completely controls the effective behavior of the porous
material, whereas the corresponding evolution of the aspect ra-
tio w is significant only at a local level and thus does not affect
the overall behavior of the composite. Of course, the VAR esti-
mate provides poor estimates for the evolution of the porosity and
consequently fails to give accurate estimates for the evolution of
Deq/ε̇

∞
eq .

3.4. Effect of the nonlinearity

The objective of this brief subsection is to discuss the effect
of the nonlinearity on the evolution of the relevant microstruc-
tural variables. In this connection, Fig. 12 shows corresponding
results for uniaxial tension loading with XΣ = 1/3 (or T /S = 0
with S > 0) as a function of the nonlinear exponent (n = 1,2,4,10)
and the macroscopic axial strain ε33. In Fig. 12a, the predictions of
the SOM for the evolution of the normalized porosity f / fo are in
very good agreement with the FEM results for all the nonlineari-
ties considered. In Fig. 12b, the SOM tends to overestimate slightly
the evolution of the aspect ratio w , when compared with the cor-
responding FEM predictions. It is remarked, however, that for this
loading the evolution of the aspect ratio does not depend strongly
on the nonlinearity of the matrix phase, certainly much less than
the corresponding evolution of the porosity. On the other hand,
the corresponding VAR evolution curves for f / fo and w do not
depend on the nonlinearity and they all coincide with the n = 1
curve. In this regard, the SOM is found to improve significantly on
the earlier VAR method, especially at high nonlinearities. Finally,
Fig. 12c shows the evolution of the normalized macroscopic ax-
ial strain-rate D33/ε̇

∞
eq . The agreement between the SOM and the
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Fig. 12. SOM, VAR and FEM curves for the evolution of (a) the normalized porosity f / fo ( fo = 0.01%), (b) aspect ratio w and (c) the normalized axial strain-rate D33/ε̇∞
eq (ε̇∞

eq
is the corresponding strain-rate in the absence of voids) for nonlinear exponents n = 1,2,4,10 under uniaxial tension loading (XΣ = 1/3 and T /S = 0 with S > 0).

Fig. 13. SOM, VAR and FEM curves for the evolution of (a) the normalized porosity f / fo ( fo = 0.01%), (b) aspect ratio w and (c) the normalized equivalent strain-rate Deq/ε̇
∞
eq

(ε̇∞
eq is the corresponding strain-rate in the absence of voids) for nonlinear exponents n = 1,2,4,10 under triaxial tension loading (XΣ = 3 and T /S = 0.727 with S > 0).
FEM estimates is remarkable even at very high nonlinearities (i.e.,
n = 10). In contrast, the corresponding VAR model underestimates
the evolution of D33/ε̇

∞
eq , particularly at high nonlinearities.

Fig. 13 shows corresponding evolution plots for triaxial tension
loading with XΣ = 3 or T /S = 0.727 with S > 0 as a function of
the nonlinear exponent n = 1,2,4,10 and the macroscopic equiv-
alent strain εeq . At this high triaxiality loading, the effect of the
nonlinearity on the evolution of f / fo is rather dramatic, as shown
in Fig. 13a. The SOM and the FEM are in very good agreement in
this case, while the SOM improves significantly on the earlier VAR
method, which is independent of the nonlinearity n and thus, all
the VAR estimates coincide with the n = 1 curve.

In Fig. 13b, the aspect ratio of the void w evolves only slightly,
while remaining very close to its initially spherical shape. Note
that for n > 4 the void evolves into an oblate shape as previ-
ously discussed in the context of Fig. 9b. However, even though
the SOM method is not able to capture this very nonlinear “local”
effect accurately, it remains in remarkable agreement with the FEM
predictions for the normalized macroscopic strain-rate Deq/ε̇

∞
eq , as

can be observed in Fig. 13c. This is a direct consequence of the fact
that the SOM is able to predict accurately the evolution of poros-
ity f / fo , which clearly dominates over the evolution of the aspect
ratio w in this case of high triaxiality. In contrast, the VAR under-
estimates significantly the evolution of the porosity and hence the
evolution of Deq/ε̇

∞
eq .
4. Viscoplasticity: Simple shear loading

In this section, we consider a porous material with initially
spherical voids and porosity fo = 1% under simple shear loading.
More specifically, we apply a velocity gradient with the only non-
zero component being L23, such that D23 = Ω23. The total amount
of shear is then defined as

γ =
t∫

0

L23 dt (13)

serving as a time-like variable. The rest of the components of the
average strain-rate D and average spin Ω are zero. While the
porosity does not evolve during the deformation process (since
Dii = 0), the shape of the voids is expected to change. In addi-
tion, due to the applied macroscopic spin Ω23, the principal axes
of the voids lying on the plane 2–3 are also expected to evolve in
time. For this reason, it is convenient to introduce the Euler angle
ψ , such that

n(1) = e(1), n(2) = cosψe(1) + sin ψe(2),

n(3) = −sinψe(1) + cosψe(2). (14)

For a better understanding of the following results, we note that
the unit vectors n(2) and n(3) correspond to the longer and
shorter principal axis respectively of the ellipsoidal voids (i.e.,
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Fig. 14. SOM and VAR curves for the evolution of (a) the two aspect ratios w1 and w2, (b) the orientation angle ψ of the voids in the plane of shear for prescribed D23 = Ω23

and (c) the equivalent and mean macroscopic normalized stress σ eq/σo and σm/σo . The nonlinearity is n = 4 and the initial porosity fo = 1%. The porosity does not change
during the process and hence is not shown here.
w2 � w1 � 1). Therefore, the angle ψ in (14) defines the direction
of the longer principal axis of the voids on the plane of deforma-
tion relative to the e(2) axis.

Fig. 14 shows the evolution of the aspect ratios w1 and w2, the
orientation angle ψ and the equivalent and mean macroscopic nor-
malized stress σ eq/σo and σm/σo as a function of the amount of
shear γ for both the SOM and the VAR methods. The nonlinearity
of the matrix phase is n = 4. In part (a) of this figure, both mod-
els generate voids with ellipsoidal shapes (i.e., w1 �= w2), whereas
the SOM predicts a sharper decrease of the two aspect ratios w1
and w2 than the VAR method which is known to be identical with
the n = 1 (linear) case, as already discussed in the previous sub-
section. On the other hand, in part (b), the voids are elongated
initially at 45◦ , i.e., in the direction of maximum stretching, and
rotate clockwise as γ increases. Here, the SOM and VAR estimates
for the orientation angle ψ coincide, which indicates that the evo-
lution of ψ does not depend on the nonlinearity of the matrix
phase in this case. In turn, in part (c) of this figure, the SOM and
VAR estimates for σ eq/σo are in very close agreement, whereas for
the hydrostatic part of σ , the SOM predicts a higher σm/σo than
the VAR. It is noted here that the normal components σ 11, σ 22 and
σ 33 become non-zero and evolve as the deformation progresses
(because of the developing anisotropy in the material). This in turn
suggests that the shearing direction is not parallel to the evolving
principal axes of the voids as the deformation progresses. Unfortu-
nately, we were not able to provide comparisons with FEM results
in this fully three-dimensional case, but comparisons with FEM re-
sults have been carried out (Danas et al., 2008c) for transverse
shear of a porous material with cylindrical voids. This comparisons
demonstrate the satisfactory performance of the model at least in
that case.

Finally, it is noted that the Gurson-type models, such as the
model of Flandi and Leblond (2005a, 2005b) cannot be used for
this special, albeit important, case of simple shear loading, since
they cannot handle general ellipsoidal shapes (w1 �= w2 �= 1), as
well as changes in the orientation of the principal axes of the
voids, and could not therefore be included in Fig. 14. In fact,
the original Gurson (1977) model, which incorporates no infor-
mation about the void shape, predicts a constant equivalent stress
σ eq/σo =

√
1 + f 2

o and a zero hydrostatic stress σm/σo = 0 for the
entire deformation process. As a consequence, the material does
not exhibit any softening or hardening at finite deformations lead-
ing to unrealistic estimates (Aravas and Ponte Castañeda, 2004;
Nahshon and Hutchinson, 2008; Tvergaard, 2008).
5. Ideal-plasticity: Plane-strain loading and instabilities

In this section, following earlier work by Ponte Castañeda and
Zaidman (1994) and Kailasam and Ponte Castañeda (1998), we
make use of the new “second-order” (SOM) model and the earlier
“variational” (VAR) method to study the effective response and pos-
sible development of shear localization in porous materials with an
ideally-plastic matrix phase subjected to plane-strain loading con-
ditions with fixed stress triaxiality XΣ .

We consider a porous medium with initial porosity fo = 1%
subjected to plane-strain loading (D22 = 0), such that the stress
triaxiality remains constant during the deformation process. This
can be accomplished by setting D33 equal to +1 (or −1), and solv-
ing for D11 to enforce the condition

XΣ = c, (15)

where c is a positive (or negative) constant. In addition, Dij = 0 for
i �= j, which implies that we induce no change in the orientation of
the principal axes of the voids. Note further that the macroscopic
equivalent strain (given in (11) for axisymmetric loading condi-
tions) is redefined here (for consistency with standard usage in
the literature) as

εeq =
t∫

0

Deq dt = 2

3

t∫
0

√
D2

33 − D11 D33 + D2
11 dt, (16)

and therefore serves as a time-like variable in the problem. It
should be emphasized that, for the above-described loading, εeq �=√

2εi jεi j/3, with εi j = ∫ t
0 Dij dt .

In connection with the previous relations, the computation of
the effective Jaumann hardening rate H J simplifies considerably,
since in this case the Jaumann rates and the standard time deriva-
tives of the relevant quantities coincide. Thus, it follows from the
analysis made in Section 5.3 of Part I that the Jaumann hardening
rate reduces to

H J = H = −
{

y f
∂Φ̃

∂ f
+

2∑
i=1

y(i)
w

∂Φ̃

∂ wi

}
, (17)

for the loading conditions (15). In this expression, Φ̃ = 0 is the
effective yield condition (see Section 5.1 of Part I of this work),
while the functions y f and y(i)

w have been defined in Section 5.3
of Part I.
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Fig. 15. SOM and VAR estimates are shown for XΣ = −0.1,0.4 and initially spherical pores. The evolution curves correspond to (a) the porosity f , (b) the aspect ratio w ,
and (c) the hardening rate of the composite as a function of the macroscopic, equivalent strain εeq . In (c) the symbols ◦ and � denote the loss of ellipticity for the porous
medium as predicted by the SOM and the VAR, respectively.
Sufficient conditions for shear localization in rigid-plastic ma-
terials have been provided by Rice (1976). The first condition is
related to the determination of the critical hardening rate Hcr ,
which, for the previously described loading, can be shown to re-
duce to Hcr = 0. The second condition, which states that there
should exist a non-deforming surface in the deformation field, is
satisfied easily due to the plane-strain character of the problem
provided that the in-plane strain-rate components be of opposite
signs, i.e., D11 D33 be negative. Therefore, in the following results,
a vanishing hardening rate (H = 0) together with D11 D33 < 0 im-
plies shear localization for the porous medium.

Fig. 15 shows evolution curves for the porosity f (Fig. 15a),
the aspect ratios w1 and w2 (Fig. 15b), and the hardening rate H
(Fig. 15c) as a function of the macroscopic equivalent strain εeq for
a porous medium with initially spherical voids (w1 = w2 = 1). The
representative values XΣ = −0.1 and XΣ = 0.4 are considered.

In Fig. 15a, the corresponding SOM estimate for XΣ = 0.4 pre-
dicts an initially high positive rate of growth of the porosity f ,
whereas at a finite strain (e.g., εeq ∼ 50%), f attains a maximum.
The same observation is also true for the VAR estimate with the
only difference that the growth of f is weaker than in the SOM
case. Note that the increase of the porosity is a softening mecha-
nism. On the other hand, in Fig. 15b, the fast rate of change in the
aspect ratios results in the hardening of the material in the direc-
tion of maximum stretching (i.e., in the 3-direction). This is true
for both the SOM and the VAR methods, while for the SOM the
rate of increase of w1 and w2 is higher than for the VAR method.
As a result of these two competing mechanisms, the porous mate-
rial exhibits initial softening, which evolves into overall hardening
at larger strains, as shown in Fig. 15c, where both the SOM and
the VAR curves for H cross zero at some (different) finite strains.
The critical strain εcr

eq at which H becomes zero, as predicted by
the SOM and the VAR models, respectively, is denoted by the sym-
bols ◦ and � in Fig. 15c. As already mentioned earlier, when H = 0
the porous material may become unstable, provided that the prod-
uct D11 D33 is negative (which is true in this case, although not
shown explicitly in the figures). Clearly, both the SOM and the VAR
methods predict such a macroscopic shear localization instability.
However, the critical strain, where the instability occurs, is differ-
ent with the SOM being lower than the VAR.

On the other hand, for XΣ = −0.1, the SOM predicts a faster
decrease of the porosity than the VAR method, and thus a faster
hardening of the porous medium, as shown in Fig. 15a. In Fig. 15b,
the corresponding SOM and VAR estimates for the evolution of
the aspect ratios w1 and w2, both of which decrease with the
deformation, indicate that the material softens faster in the di-
rection of the maximum principal strain. When these two contra-
dicting mechanisms, i.e., the evolution of porosity and the aspect
ratios, are combined together, they result in overall hardening of
the porous medium, which is illustrated by the initial positive
hardening rate H in Fig. 15c, for both methods. This geometri-
cal hardening of the porous medium continues as the deformation
progresses, and as a consequence, the material does not exhibit in-
stabilities, which is deduced by observing that H never attains the
zero value.

Furthermore, it should be emphasized that in the Gurson (1977)
model (not included here for clarity of the results in Fig. 15),
the porosity f is the only hardening/softening mechanism. More
specifically, for tensile loadings (e.g., XΣ > 0), the porosity in-
creases leading to the softening of the porous medium (i.e., H < 0),
while for compressive ones (e.g., XΣ < 0), the porosity decreases
leading to the overall hardening of the porous material (i.e., H > 0)
for the entire deformation process. For XΣ = 0, the Gurson model
predicts no change in the porosity and hence H = 0 as the de-
formation progresses. This is the only case that the Gurson model
satisfies, albeit trivially, the Rice conditions for a shear localization
instability. By comparison of the Gurson model with the results
presented in Fig. 15 for the SOM and the VAR models, we deduce
that the changes in the void shape (i.e., in the aspect ratios w1 and
w2) provide the key physical mechanism for making the hardening
rate H cross the zero axis (by inducing an additional geometrical
softening/hardening in the deformation of the porous material).

The procedure of identifying an instability point, described pre-
viously, can be repeated for the entire range of stress triaxialities
XΣ ∈ (−∞,+∞). Accordingly, Fig. 16 presents a map of the critical
strain εcr

eq , where the instability occurs, as a function of the pre-
scribed stress triaxiality XΣ , for two initial porosities (a) fo = 1%
and (b) fo = 10%. It is interesting to note that the SOM and the
VAR predictions are qualitatively similar (although quite different
in quantitative terms) for fo = 1%, and very similar for fo = 10%.
Thus, for both initial porosities considered here, the SOM and VAR
methods predict no instabilities for stress triaxialities higher than
XΣ � 0.6, as well as for negative ones (XΣ < 0). In turn, it should
be pointed out that the Gurson model only predicts (trivially) an
instability for XΣ = 0 and for this reason it has not been included
in Fig. 16.

At this point, it should be emphasized that the present analysis
is strictly valid for plane-strain loading conditions and porous ma-



K. Danas, P. Ponte Castañeda / European Journal of Mechanics A/Solids 28 (2009) 402–416 415
Fig. 16. Macroscopic onset-of-failure maps as predicted by the SOM and VAR methods, for an initially isotropic porous medium with ideally-plastic matrix phase and initial
porosity (a) fo = 1% and (b) fo = 10%. The plot shows the critical equivalent strain εcr

eq as a function of the applied stress triaxiality XΣ .
terials with an ideally-plastic matrix phase. Predictions for more
realistic situations will require taking into account elastic and
hardening effects in the matrix phase. Such extensions are rel-
atively straightforward to incorporate, and will be used in fu-
ture work to make comparisons with experimental results for
other loading conditions, including plane stress and axisymmetric
loading states (Bao and Wierzbicki, 2004; Barsoum and Faleskog,
2007).

6. Concluding remarks

In this work, we have obtained homogenization estimates for
random porous media with viscoplastic (including ideally-plastic)
matrix phases and ellipsoidal voids subjected to general loading
conditions. These estimates were derived by making use of the
framework developed in Part I of this work, which is based on the
nonlinear “second-order” homogenization method of Ponte Cas-
tañeda (2002a). The major result of this work is the dramatic im-
provement of the new model on the earlier “variational” estimates
of Ponte Castañeda (1991), Ponte Castañeda and Zaidman (1994),
Kailasam and Ponte Castañeda (1998), Aravas and Ponte Castañeda
(2004) for high-triaxiality loading conditions. This improvement
is a direct consequence of the fact that the new model is con-
structed in such a way that it recovers exactly the behavior of a
“composite-sphere assemblage” in the limit of hydrostatic loadings.
On the other hand, the new model preserves all the features al-
ready present in the initial formulation of the “variational” (Ponte
Castañeda, 1991) and “second-order” (Ponte Castañeda, 2002b) ho-
mogenization methods, and thus is capable of providing estimates
for general loading conditions and ellipsoidal microstructures.

The “second-order” model has been compared with the recent
Flandi and Leblond (2005a, 2005b) model for the prediction of the
instantaneous behavior of transversely isotropic porous materials
consisting of aligned spheroidal voids subjected to axisymmet-
ric loading conditions aligned with the pore symmetry axis. The
agreement between the two models was better for prolate than
for oblate voids. However, the new model allows for the consid-
eration of more general (non-spheroidal) ellipsoidal microstruc-
tures leading to significantly different effective behaviors, as in-
tuitively expected. In addition, it has been observed that, for all
microstructural configurations considered in this study, involving
prolate, oblate and ellipsoidal voids, the relative orientation of the
voids with respect to the principal loading directions can have dra-
matic effects on the instantaneous effective response of the porous
medium.

Furthermore, the predictions of the new “second-order” model
for finite-strain loading histories has been validated by compar-
ison with unit-cell finite element calculations and corresponding
results obtained by the earlier “variational” method and the Flandi
and Leblond (2005a, 2005b) model. The “second-order” model has
been found to improve significantly on the earlier “variational”
method, which was shown to provide estimates that are inde-
pendent of the nonlinearity of the matrix phase, while remaining
overly stiff at high stress triaxialities. We have also shown that
both the “second-order” and the Flandi–Leblond models provide
accurate estimates for the determination of the effective response
of the porous medium for axisymmetric loading conditions and
initially spherical voids. In particular, the present model delivers
better results for the evolution of the porosity and the macro-
scopic strain-rate, for the stress triaxialities considered here. On
the other hand, the Flandi–Leblond model can capture nonlinear
effects regarding the evolution of the aspect ratio of the voids at
high triaxialities. Such effects were first discussed by Budiansky et
al. (1982) and Fleck and Hutchinson (1986), who found that at suf-
ficiently high triaxialities and nonlinearities the voids elongate in
a direction that is transverse to the maximum principal strain or
stress. However, we found that this counter-intuitive elongation of
the void at high triaxialities does not appear to have a significant
effect on the macroscopic response of the porous composite, which
is mainly controlled by the evolution of the porosity at high stress
triaxialities (and is captured quite accurately by the “second-order”
model).

In addition to the aforementioned aligned loadings, we have
also considered a simple shear (i.e., non-aligned) loading. In this
case, both the “second-order” and “variational” models predict a
change in the orientation of the voids, which take on ellipsoidal
shapes (i.e., two different aspect ratios) during the deformation
process. As a consequence of the induced anisotropy in the ma-
terial, normal components of the macroscopic stress develop as
the deformation progresses. In this connection it should be em-
phasized that no other model in the literature can capture these
features associated with this basic loading history.

Finally, following prior work by Ponte Castañeda and Zaidman
(1994) and Kailasam and Ponte Castañeda (1998), the “second-
order” and the “variational” methods have been applied to porous
media with an ideally-plastic matrix phase subjected to plane-
strain loading conditions with fixed stress triaxiality loading. An
important conclusion resulting from the study of this problem is
that the various microstructural variables interact in complex ways
such that the final response of the material may exhibit over-
all geometric softening or hardening. This geometric softening or
hardening of the porous medium can lead to macroscopic shear
localization instabilities (Rice, 1976). In this regard, the present
model (and the earlier “variational” method) provides a concrete
theoretical framework for the prediction of macroscopic shear lo-
calization instabilities and is expected to be complementary to
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earlier models, such as the one by Gurson (1977) and its recent
extensions by Nahshon and Hutchinson (2008), Leblond and Mot-
tet (2008) and Xue (2008), which assume that the microstructure
remains isotropic during the deformation history, and are there-
fore not capable of accurately capturing the induced geometrical
softening (or hardening) of the material for low-triaxiality load-
ing conditions. In this connection, it should be mentioned that
recent work by Michel et al. (2007) has demonstrated the phys-
ical relevance of these “macroscopic” instabilities in the related
context of porous elastomers. Finally, numerical implementation of
the present model in a general purpose finite element subroutine
would allow consideration of engineering applications, as well as
the comparison of the new estimates proposed in this work with
experimental results by Bao and Wierzbicki (2004) and Barsoum
and Faleskog (2007), particularly for shear loading conditions. Such
work is now underway and will be reported elsewhere.
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