Supplemental Material: Bifurcation analysis of twisted liquid crystal bilayers

K. Danas ${ }^{\text {a,* }}$, D. Mukherjee ${ }^{\text {a }}$, K. Haldar ${ }^{\text {b }}$, N. Triantafyllidis ${ }^{\text {a,c }}$
${ }^{a}$ LMS, C.N.R.S., École Polytechnique, 91128 Palaiseau, France
${ }^{b}$ Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
${ }^{c}$ Aerospace Engineering Department \mathcal{E}^{3} Mechanical Engineering Department (emeritus), The University of Michigan, Ann Arbor, Michigan 48109-2140, USA

This Supplemental Material (SM) explicitly derives the matrices $\mathbf{Q}^{(r)}, \mathbf{H}_{c, s}^{(r)}$ and $\mathbf{F}_{c, s}^{(r)}$ (for $r=1,2$), that are appearing in the analytical solution of Section 5 of the main article. We first expand the governing equations of the main text (A5.5) ${ }^{1}$

$$
\begin{align*}
& k_{1}^{(r)}\left(\Delta n_{2,22}+\Delta n_{3,32}\right)+k_{2}^{(r)}\left(\Delta n_{2,33}-\Delta n_{3,23}\right)+k_{3}^{(r)} \Delta n_{2,11}=0 \tag{1}\\
& k_{1}^{(r)}\left(\Delta n_{2,23}+\Delta n_{3,33}\right)+k_{2}^{(r)}\left(\Delta n_{3,22}-\Delta n_{2,32}\right)+k_{3}^{(r)} \Delta n_{3,11}+\frac{C_{\perp}^{(r)}}{C_{b}^{(r)}} d_{0}\left[C_{\perp}^{(r)} \frac{d_{0}}{\varepsilon_{0}} \Delta n_{3}+\Delta \varphi_{, 1}\right]=0, \tag{2}\\
& \Delta \varphi, 11+\Delta \varphi_{, 22}+\Delta \varphi_{, 33}+\frac{C_{\perp}^{(r)}}{C_{b}^{(r)}}\left[\Delta \varphi_{, 11}+C_{\perp}^{(r)} \frac{d_{0}}{\varepsilon_{0}} \Delta n_{3,1}\right]=0 . \tag{3}
\end{align*}
$$

Substituting the eigenmode (A5.8) to the above, we obtain

$$
\begin{align*}
& k_{1}^{(r)}\left(\omega_{2}^{2} \Delta \mathcal{N}_{2}^{(r)}+\omega_{2} \mathcal{N}_{3,3}^{(r)}\right)-k_{2}^{(r)}\left(\Delta \mathcal{N}_{2,33}^{(r)}+\omega_{2} \Delta \mathcal{N}_{3,3}^{(r)}\right)+k_{3}^{(r)} \omega_{1}^{2} \Delta \mathcal{N}_{2}^{(r)}=0, \tag{4}\\
& k_{1}^{(r)}\left(\omega_{2} \Delta \mathcal{N}_{2,3}^{(r)}+\Delta \mathcal{N}_{3,33}^{(r)}\right)- \\
& k_{2}^{(r)}\left(\omega_{2}^{2} \Delta \mathcal{N}_{3}^{(r)}+\omega_{2} \Delta \mathcal{N}_{2,3}^{(r)}\right)-k_{3}^{(r)} \omega_{1}^{2} \Delta \mathcal{N}_{3}^{(r)}+C^{(r)} d_{0}\left[C_{\perp}^{(r)} \frac{d_{0}}{\varepsilon_{0}} \Delta \mathcal{N}_{3}^{(r)}+\omega_{1} \Delta \Phi^{(r)}\right]=0, \tag{5}\\
& -\omega_{1}^{2} \Delta \Phi^{(r)}-\omega_{2}^{2} \Delta \Phi^{(r)}+\Delta \Phi_{, 33}^{(r)}-C^{(r)}\left[\omega_{1}^{2} \Delta \Phi^{(r)}+C_{\perp}^{(r)} \frac{d_{0}}{\varepsilon_{0}} \omega_{1} \Delta \mathcal{N}_{3}^{(r)}\right]=0, \tag{6}
\end{align*}
$$

where $C^{(r)}=C_{\perp}^{(r)} / C_{b}^{(r)}$. One can show that the above set of ordinary differential equations admit a general solution of the form (A5.9). The above, upon substitution of (A5.9) yields a set of three homogeneous algebraic equations (A5.10), where $\mathbf{Q}^{(r)}$ is given by

$$
\mathbf{Q}^{(r)} \equiv\left[\begin{array}{ccc}
k_{1}^{(r)} \omega_{2}^{2}+k_{3}^{(r)} \omega_{1}^{2}-k_{2}^{(r)} \rho^{2} & \left(k_{1}^{(r)}-k_{2}^{(r)}\right) \omega_{2} \rho & 0 \tag{7}\\
\left(k_{1}^{(r)}-k_{2}^{(r)}\right) \omega_{2} \rho & -k_{2}^{(r)} \omega_{2}^{2}-k_{3}^{(r)} \omega_{1}^{2}+k_{1}^{(r)} \rho^{2}+C^{(r)} C_{\perp}^{(r)} d_{0}^{2} / \varepsilon_{0} & C^{(r)} d_{0} \omega_{1} \\
0 & C^{(r)} C_{\perp}^{(r)} d_{0} \omega_{1} / \varepsilon_{0} & \left(1+C^{(r)}\right) \omega_{1}^{2}+\omega_{2}^{2}-\rho^{2}
\end{array}\right]
$$

To obtain a non-trivial solution of (A5.10), the condition $\operatorname{det}\left[\mathbf{Q}^{(r)}\right]=0$ must be satisfied. This condition leads to a characteristic bi-cubic polynomial in ρ given by (A5.11). Subsequently, the eigenmodes $\Delta \widehat{\mathcal{N}}_{1}$ and $\Delta \widehat{\mathcal{N}}_{2}$ are given in (A5.12).

[^0]Then, it only remains to calculate the unknown amplitudes $\boldsymbol{\Xi}$ from the interface conditions (A5.6), (A5.7) and the boundary conditions (A4.3) and (A5.2). For that, we write the interface conditions (A5.6) ${ }_{1}$ and $(\mathrm{A} 5.7)_{1}$ at $x_{3}=0$, such that

$$
\begin{align*}
& {\left[\left[\Delta \mathcal{N}_{2}\right]\right]=0 \quad \Longrightarrow \quad \sum_{I=1}^{3}\left(\xi_{I}^{c,(2)} \Delta \hat{\mathcal{N}}_{2}^{I,(2)}-\xi_{I}^{c,(1)} \Delta \widehat{\mathcal{N}}_{2}^{I,(1)}\right)=0,} \tag{8}\\
& {\left[\left[\Delta \mathcal{N}_{3}\right]\right]=0 \quad \Longrightarrow \quad \sum_{I=1}^{3}\left(\xi_{I}^{s,(2)} \Delta \widehat{\mathcal{N}}_{3}^{I,(2)}-\xi_{I}^{s,(1)} \Delta \widehat{\mathcal{N}}_{3}^{I,(1)}\right)=0,} \tag{9}\\
& {\left[[\Delta \Phi]=0 \quad \Longrightarrow \quad \sum_{I=1}^{3}\left(\xi_{I}^{s,(2)}-\xi_{I}^{s,(1)}\right)=0 .\right.} \tag{10}
\end{align*}
$$

Similarly, the interface conditions (A5.6) 2 and (A5.7) ${ }_{3}$ are now obtained explicitly as

$$
\begin{align*}
& {\left[\left[\mathcal{L}_{23 k l}^{\nabla n \nabla n,(r)} \Delta n_{k, l}\right]\right]=0 \Longrightarrow\left[\left[k_{2}^{(r)}\left(\Delta n_{2,3}-\Delta n_{3,2}\right)\right]\right]=0 } \\
\Longrightarrow & \sum_{I=1}^{3}\left[k_{2}^{(2)} \xi_{I}^{s,(2)}\left(\rho_{I}^{(2)} \Delta \widehat{\mathcal{N}}_{2}^{I,(2)}+\omega_{2} \Delta \widehat{\mathcal{N}}_{3}^{I,(2)}\right)-k_{2}^{(1)} \xi_{I}^{s,(1)}\left(\rho_{I}^{(1)} \Delta \widehat{\mathcal{N}}_{2}^{I,(1)}+\omega_{2} \Delta \widehat{\mathcal{N}}_{3}^{I,(1)}\right)\right]=0, \tag{11}\\
& {\left.\left[\left[\mathcal{L}_{33 k l}^{\nabla n \nabla n,(r)} \Delta n_{k, l}\right]\right]=0 \Longrightarrow\left[k_{1}^{(r)}\left(\Delta n_{2,2}+\Delta n_{3,3}\right)\right]\right]=0 } \\
\Longrightarrow & \sum_{I=1}^{3}\left[k_{1}^{(2)} \xi_{I}^{c,(2)}\left(\omega_{2} \Delta \widehat{\mathcal{N}}_{2}^{I,(2)}+\rho_{I}^{(2)} \Delta \widehat{\mathcal{N}}_{3}^{I,(2)}\right)-k_{1}^{(1)} \xi_{I}^{c,(1)}\left(\omega_{2} \Delta \widehat{\mathcal{N}}_{2}^{I,(1)}+\rho_{I}^{(1)} \Delta \widehat{\mathcal{N}}_{3}^{I,(1)}\right)\right]=0, \tag{12}\\
\Longrightarrow & {\left.\left.\left[\left[\mathcal{L}_{3 j}^{n \nabla \varphi,(r)} \Delta n_{j}+\mathcal{L}_{3 j}^{\nabla \varphi \nabla \varphi,(r)} \Delta \varphi, j\right]\right]=0 \Longrightarrow \varepsilon_{\perp}^{(r)} \Delta \Phi_{, 3}\right]\right]=0 } \\
\Longrightarrow & \sum_{I=1}^{3}\left(\frac{\varepsilon_{0}}{C_{\perp}^{(2)}} \rho_{I}^{(2)} \xi_{I}^{c,(2)}-\frac{\varepsilon_{0}}{C_{\perp}^{(1)}} \rho_{I}^{(1)} \xi_{I}^{c,(1)}\right)=0 . \tag{13}
\end{align*}
$$

Equations (8), (12) and (13) are now re-written in the following matrix form:

$$
\begin{equation*}
\mathbf{H}_{c}^{(2)} \boldsymbol{\xi}^{c,(2)}=\mathbf{H}_{c}^{(1)} \boldsymbol{\xi}^{c,(1)} \tag{14}
\end{equation*}
$$

where
$\mathbf{H}_{c}^{(r)} \equiv\left[\begin{array}{ccc}\Delta \widehat{\mathcal{N}}_{2}^{1,(r)} & \Delta \widehat{\mathcal{N}}_{2}^{2,(r)} & \Delta \widehat{\mathcal{N}}_{2}^{3,(r)} \\ k_{1}^{(r)}\left(\omega_{2} \Delta \widehat{\mathcal{N}}_{2}^{1,(r)}+\rho_{1}^{(r)} \Delta \widehat{\mathcal{N}}_{3}^{1,(r)}\right) & k_{1}^{(r)}\left(\omega_{2} \Delta \widehat{\mathcal{N}}_{2}^{2,(r)}+\rho_{2}^{(r)} \Delta \widehat{\mathcal{N}}_{3}^{2,(r)}\right) & k_{1}^{(r)}\left(\omega_{2} \Delta \widehat{\mathcal{N}}_{2}^{3,(r)}+\rho_{3}^{(r)} \Delta \widehat{\mathcal{N}}_{3}^{3,(r)}\right) \\ \varepsilon_{0} \rho_{1}^{(r)} / C_{\perp}^{(r)} & \varepsilon_{0} \rho_{2}^{(r)} / C_{\perp}^{(r)} & \varepsilon_{0} \rho_{3}^{(r)} / C_{\perp}^{(r)}\end{array}\right]$,
with $r=1,2$. Similarly, $(9-11)$ are now expressed as

$$
\begin{equation*}
\mathbf{H}_{s}^{(2)} \boldsymbol{\xi}^{s,(2)}=\mathbf{H}_{s}^{(1)} \boldsymbol{\xi}^{s,(1)} \tag{15}
\end{equation*}
$$

where
$\mathbf{H}_{s}^{(r)} \equiv\left[\begin{array}{ccc}\Delta \hat{\mathcal{N}}_{3}^{1,(r)} & \Delta \hat{\mathcal{N}}_{3}^{2,(r)} & \Delta \hat{\mathcal{N}}_{3}^{3,(r)} \\ 1 & 1 & 1 \\ k_{2}^{(r)}\left(\rho_{1}^{(r)} \Delta \widehat{\mathcal{N}}_{2}^{1,(r)}+\omega_{2} \Delta \widehat{\mathcal{N}}_{3}^{1,(r)}\right) & k_{2}^{(r)}\left(\rho_{2}^{(r)} \Delta \widehat{\mathcal{N}}_{2}^{2,(r)}+\omega_{2} \Delta \widehat{\mathcal{N}}_{3}^{2,(r)}\right) & k_{2}^{(r)}\left(\rho_{3}^{(r)} \Delta \widehat{\mathcal{N}}_{2}^{3,(r)}+\omega_{2} \Delta \widehat{\mathcal{N}}_{3}^{3,(r)}\right)\end{array}\right]$.

The boundary conditions (A4.3) 3_{3} and (A5.2) ${ }_{3}$ lead to

$$
\begin{align*}
\Delta \mathcal{N}_{2}=0 & \Longrightarrow \sum_{I=1}^{3}\left\{\xi_{I}^{s,(2)} \sinh \left(\rho_{I}^{(2)} \ell_{3}^{(2)}\right)+\xi_{I}^{c,(2)} \cosh \left(\rho_{I}^{(2)} \ell_{3}^{(2)}\right)\right\} \Delta \widehat{\mathcal{N}}_{2}^{I,(2)}=0, \tag{16}\\
\Delta \mathcal{N}_{3}=0 & \Longrightarrow \sum_{I=1}^{3}\left\{\xi_{I}^{s,(2)} \cosh \left(\rho_{I}^{(2)} \ell_{3}^{(2)}\right)+\xi_{I}^{c,(2)} \sinh \left(\rho_{I}^{(2)} \ell_{3}^{(2)}\right)\right\} \Delta \widehat{\mathcal{N}}_{3}^{I,(2)}=0, \tag{17}\\
\Delta \Phi=0 & \Longrightarrow \sum_{I=1}^{3}\left\{\xi_{I}^{s,(2)} \cosh \left(\rho_{I}^{(2)} \ell_{3}^{(2)}\right)+\xi_{I}^{c,(2)} \sinh \left(\rho_{I}^{(2)} \ell_{3}^{(2)}\right)\right\}=0 . \tag{18}
\end{align*}
$$

The above equations can be expressed in matrix form as

$$
\begin{equation*}
\mathbf{F}_{c}^{(2)} \boldsymbol{\xi}^{c,(2)}=\mathbf{F}_{s}^{(2)} \boldsymbol{\xi}^{s,(2)}, \tag{19}
\end{equation*}
$$

where

$$
\mathbf{F}_{c}^{(2)} \equiv\left[\begin{array}{ccc}
\cosh \left(\rho_{1}^{(2)} \ell_{3}^{(2)}\right) \Delta \hat{\mathcal{N}}_{2}^{1,(2)} & \cosh \left(\rho_{2}^{(2)} \ell_{3}^{(2)}\right) \Delta \hat{\mathcal{N}}_{2}^{2,(2)} & \cosh \left(\rho_{3}^{(2)} \ell_{3}^{(2)}\right) \Delta \hat{\mathcal{N}}_{2}^{3,(2)} \\
\sinh \left(\rho_{1}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{3}^{1,(2)} & \sinh \left(\rho_{2}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{3}^{2,(2)} & \sinh \left(\rho_{3}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{3}^{3,(2)} \\
\sinh \left(\rho_{1}^{(2)} \ell_{3}^{(2)}\right) & \sinh \left(\rho_{2}^{(2)} \ell_{3}^{(2)}\right) & \sinh \left(\rho_{3}^{(2)} \ell_{3}^{(2)}\right)
\end{array}\right]
$$

and

$$
\mathbf{F}_{s}^{(2)} \equiv\left[\begin{array}{ccc}
-\sinh \left(\rho_{1}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{2}^{1,(2)} & -\sinh \left(\rho_{2}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{2}^{2,(2)} & -\sinh \left(\rho_{3}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{2}^{3,(2)} \\
-\cosh \left(\rho_{1}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{3}^{1,(2)} & -\cosh \left(\rho_{2}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{3}^{2,(2)} & -\cosh \left(\rho_{3}^{(2)} \ell_{3}^{(2)}\right) \Delta \widehat{\mathcal{N}}_{3}^{3,(2)} \\
-\cosh \left(\rho_{1}^{(2)} \ell_{3}^{(2)}\right) & -\cosh \left(\rho_{2}^{(2)} \ell_{3}^{(2)}\right) & -\cosh \left(\rho_{3}^{(2)} \ell_{3}^{(2)}\right)
\end{array}\right]
$$

Similarly, from (A4.3) ${ }_{1}$ and (A5.2) ${ }_{1}$, we obtain

$$
\begin{equation*}
\mathbf{F}_{c}^{(1)} \boldsymbol{\xi}^{c,(1)}=\mathbf{F}_{s}^{(1)} \boldsymbol{\xi}^{s,(1)} \tag{20}
\end{equation*}
$$

where the matrices $\mathbf{F}_{c}^{(1)}$ and $\mathbf{F}_{s}^{(1)}$ are given by

$$
\mathbf{F}_{c}^{(1)} \equiv\left[\begin{array}{ccc}
\cosh \left(\rho_{1}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{2}^{1,(1)} & \cosh \left(\rho_{2}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{2}^{2,(1)} & \cosh \left(\rho_{3}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{2}^{3,(1)} \\
-\sinh \left(\rho_{1}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{3}^{1,(1)} & -\sinh \left(\rho_{2}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{3}^{2,(1)} & -\sinh \left(\rho_{3}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{3}^{3,(1)} \\
-\sinh \left(\rho_{1}^{(1)} \ell_{3}^{(1)}\right) & -\sinh \left(\rho_{2}^{(1)} \ell_{3}^{(1)}\right) & -\sinh \left(\rho_{3}^{(1)} \ell_{3}^{(1)}\right)
\end{array}\right]
$$

and

$$
\mathbf{F}_{s}^{(1)} \equiv\left[\begin{array}{ccc}
\sinh \left(\rho_{1}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{2}^{1,(1)} & \sinh \left(\rho_{2}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{2}^{2,(1)} & \sinh \left(\rho_{3}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{2}^{3,(1)} \\
-\cosh \left(\rho_{1}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{3}^{1,(1)} & -\cosh \left(\rho_{2}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{3}^{2,(1)} & -\cosh \left(\rho_{3}^{(1)} \ell_{3}^{(1)}\right) \Delta \widehat{\mathcal{N}}_{3}^{3,(1)} \\
-\cosh \left(\rho_{1}^{(1)} \ell_{3}^{(1)}\right) & -\cosh \left(\rho_{2}^{(1)} \ell_{3}^{(1)}\right) & -\cosh \left(\rho_{3}^{(1)} \ell_{3}^{(1)}\right)
\end{array}\right] .
$$

Finally, from (14), (15), (19) and (20) we obtain the set of 12 homogeneous algebraic equations, which is put in the compact form

$$
\underbrace{\left[\begin{array}{cccc}
-\mathbf{H}_{c}^{(1)} & \mathbf{0} & \mathbf{H}_{c}^{(2)} & \mathbf{0} \tag{21}\\
\mathbf{0} & -\mathbf{H}_{s}^{(1)} & \mathbf{0} & \mathbf{H}_{s}^{(2)} \\
\mathbf{0} & \mathbf{0} & \mathbf{F}_{c}^{(2)} & -\mathbf{F}_{s}^{(2)} \\
\mathbf{F}_{c}^{(1)} & -\mathbf{F}_{s}^{(1)} & \mathbf{0} & \mathbf{0}
\end{array}\right]}_{\mathbf{M}\left(\omega_{1}, \omega_{2}, d_{0}\right)} \underbrace{\left[\begin{array}{l}
\boldsymbol{\xi}^{c,(1)} \\
\boldsymbol{\xi}^{s,(1)} \\
\boldsymbol{\xi}^{c,(2)} \\
\boldsymbol{\xi}^{s,(2)}
\end{array}\right]}_{\boldsymbol{\Xi}}=\mathbf{0} .
$$

In this expression, \mathbf{M} is the matrix defined in equation (A5.13) in the main text.

[^0]: * Corresponding author.

 Email addresses: konstantinos.danas@polytechnique.edu (K. Danas), nicolas.triantafyllidis@polytechnique.edu (N. Triantafyllidis)
 ${ }^{1}$ henceforth the letter A will be used to denote the corresponding equation number in the main article.

