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This work proposes an extension of the well-known random sequential adsorption (RSA) method in the
context of non-overlapping random mono- and polydisperse ellipsoidal inclusions. The algorithm is gen-
eral and can deal with inclusions of different size, shape and orientation with or without periodic geo-
metrical constraints. Specifically, polydisperse inclusions, which can be in terms of different size,
shape, orientation or even material properties, allow for larger volume fractions without the need of addi-
tional changes in the main algorithm. Unit-cell computations are performed by using either the fast
Fourier transformed-based numerical scheme (FFT) or the finite element method (FEM) to estimate the
effective elastic properties of voided particulate microstructures. We observe that an isotropic overall
response is very difficult to obtain for random distributions of spheroidal inclusions with high aspect
ratio. In particular, a substantial increase (or decrease) of the aspect ratio of the voids leads to a markedly
anisotropic response of the porous material, which is intrinsic of the RSA construction. The numerical
estimates are probed by analytical Hashin-Shtrikman-Willis (HSW) estimates and bounds.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The effective physical properties of random heterogeneous
materials are strongly dependent upon their microstructure.
Therefore, the statistically accurate quantitative characterization
of the microstructure is of great importance in their modeling.
Specifically, knowledge of microstructural statistical information
(e.g. volume fractions, shapes, connectivity, spatial distributions
and orientations of constituents) is fundamental in understanding
and interpreting the microstructure-property relationships. Statis-
tical descriptors such as n-point probability functions, are widely
used to quantify mathematically this information in a broad class
of random microstructures (see comprehensive reviews in [1,2]).
They are useful in the random generation or stochastic reconstruc-
tion of realistic virtual microstructures.

Random generation or stochastic reconstruction of virtual
microstructures needs to take into account an infinite amount of
microstructural statistical properties. However, in practice, only
limited (lower-order) statistical information is available either
experimentally or theoretically. The accessibility of the high-level
statistical information remains an important focus of research
[3]. Statistical microstructural descriptors (e.g., n-point probability
functions, lineal-path function, pore-size distribution functions,
etc.), are widely used to quantify mathematically this information
in a broad class of randommicrostructures. A review of several dis-
tribution functions can be found in [4,2,5].

In homogenization based statistical continuum theories [6–
9,2,10], the microstructural statistics of the representative volume
element of randommultiphase materials is assumed to be spatially
uniform and ergodic. This means that probability functions are
insensitive to translations and sample realizations. It follows that,
the one-point probability function is simply the volume fraction of
the phases. In turn, the phase distribution can be described by two-
or higher order probability functions and can be statistically isotro-
pic or statistically anisotropic. A number of two-point correlation
function methods have been proposed in the literature. The ellip-
soidal symmetry can be traced back to Willis [11,7] while Ponte
Castañeda and Willis [12] proposed estimates that allow for differ-
ent inclusion shapes and distribution functions. In the present
work, the focus is on ‘‘almost isotropic” responses with randomly
oriented ellipsoidal voids and use will be made of the Hashin-
Shtrikman-Willis (HSW) estimates [13–15], which are considered
to be sufficient for the purposes of the present study.
porous
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1.1. Random process based on molecular dynamics

The basic idea of this process is due to Lubachevsky and Still-
inger [16] and Lubachevsky et al. [17] who proposed an algorithm
based on molecular dynamics for random packings of disks and
spheres in a square primitive cell. This algorithm was extended
for a system of non-spherical particles in [18]. The algorithm treats
all inclusions on an equal footing consisting in simultaneous gen-
eration of inclusions. Recently, Ghossein and Lévesque [19] were
inspired by this approach to propose a fully automated numerical
tool for a comprehensive validation of linear elastic homogeniza-
tion models in the case of spherical or ellipsoidal particles rein-
forced composites. Vincent et al. [20] have used a similar random
process based of the molecular dynamics for the study of the effec-
tive plastic flow surface of a fluid saturated bi-porous material. The
main advantage of this algorithm is that high volume fractions (i.e.
greater than 30%) can be achieved. Polydisperse microstructures
can be simply obtained by considering nonuniform growth rates
for the inclusions [21].

1.2. General overview of the random sequential addition process

The algorithm proposed in the present study is based on a con-
secutive generation of inclusions in a periodic cell. It consists in
placing randomly, irreversibly, and sequentially non-overlapping
objects into a volume (or onto a surface) [22,23,2]. In this process,
the acceptance of subsequent inclusion is constrained by some
conditions reliant to the previously accepted inclusions and to
the cell faces. Recent investigations have used the RSA algorithm
in the context of linear and non-linear computational homogeniza-
tion of composites or porous materials containing spherical parti-
cles or pores [24–27], monodisperse spheroidal inclusions [28] or
even inclusions with octahedral, tetrahedral or cubic shapes [29].
The drawback of this algorithm is the fact that in the case of
monodisperse microstructure, it is difficult to achieve volume frac-
tions greater than 30%. To overcome this limitation, Segurado and
Llorca [24] (see also [30,31]) developed a modified version of the
RSA algorithm applied to spherical particles to reach higher
volume fractions. In an alternative perspective and perhaps more
closely related to analytical homogenization methods [11,7],
Lopez-Pamies et al. [27] applied the RSA algorithm to polydisperse
microstructures allowing for much higher volume fractions with-
out any additional operations and without percolation thresholds
(but also look at multiscale morphological models such as in [32]
albeit for overlapping inclusions). Most of the studies in the
literature pertain to two-phase composites. A recent extension of
the RSA algorithms to N-phase composites that contain inclusions
with different material constitutive response has been proposed in
[33].

1.3. Scope of the study

In the present study, we propose an extension of the RSA
algorithm to obtain random periodic (or not) distributions of
mono- and polydisperse non-overlapping ellipsoidal inclusions of
arbitrary shape and orientation. The centers of the ellipsoidal
inclusions are randomly generated in a cuboidal cell following a
uniform distribution probability. All ellipsoids that share the same
shape and orientation shall belong to the same particle family. In
the case of polydisperse distributions (i.e. inclusions of different
sizes), one can reach with appropriate selection of the inter-
distance parameters rather high volume fractions (> 60%) without
need of additional operations contrary to previous studies [19].
Then, we consider the numerical computation of the effective lin-
ear elastic properties of porous periodic microstructures by using a
FFT-based numerical scheme and the FE method. We investigate
Please cite this article in press as: Anoukou K et al. Random distribution of po
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particularly the deviation from isotropy and compare them with
HSW estimates [11] which in some cases correspond to rigorous
upper bounds. Voided microstructures are especially of interest
in the context of geomaterials and rock physics. We show that
the HSW estimates, which correspond to infinitely polydisperse
matrix-inclusion systems, are extremely accurate for porous mate-
rials (but this is not the case for rigid particles [27]) even for
monodisperse microstructures up to fairly high volume fractions
(up to 35%). Beyond that volume fraction, the present algorithm
needs to be modified (e.g. as in [19]) to reach higher volume frac-
tion of monodisperse inclusions but that is beyond the scope of this
work. Instead, higher and more realistic high-volume-fraction
microstructures can be easily attained by using polydisperse sizes
of inclusions.

In Section 2, we discuss in detail the extension of the RSA
algorithm in the context of random mono- and polydisperse ellip-
soids. Subsequently, in Section 3, boundary conditions are briefly
presented and some details on the FFT and FEM methods, needed
to carry out our numerical analysis of the effective elastic proper-
ties, are given. In Section 4, we show representative results for
‘‘almost” isotropic porous materials with random spherical, oblate
and prolate voids and discuss their effect on the effective bulk
and shear moduli, as well as their deviation from a purely isotro-
pic response. The complete RSA algorithm is presented in appen-
dix together with a convergence analysis of the FFT computations
in terms of number of pores, voxel size and number of
realizations.
2. Extension of the RSA algorithm for ellipsoidal heterogeneities

In this section, we extend previous approaches to include non-
overlapping ellipsoids of arbitrary orientation and relative size. The
extension consists in the generalization of the RSA algorithm pro-
posed in [24,27] for polydisperse inclusions. First, we define the
microstructural parameters used in our process. Then, similar to
most studies in the literature using the RSA algorithms, we intro-
duce the geometric conditions imposed in order to allow for an
adequate spacial discretization. Three types of geometric con-
straints are generally imposed:

1. For non-overlapping inclusions, the spacing between the inclu-
sions must exceed a minimum value noted s1 for proper dis-
cretization. Assuming periodicity of the inclusion distribution,
this condition has to be checked 26 times for each pair of inclu-
sions, i.e. between the newly added inclusion and any previ-
ously accepted inclusion as well as its periodic images near
the opposite faces.

2. The inclusion surface must be sufficiently far from the cuboidal
boundary faces to prevent, for example, the presence of dis-
torted finite elements during meshing. This imposes that the
distance from a point on the surface of the inclusion to any of
the faces of the cuboidal cell must take a minimum value s2.
Note, however, that this is less constraining in the context of
FFT calculations mainly used in the present work.

3. In the case of periodic microstructures, any inclusion which
intersects with any of the cuboidal-cell boundary faces must
be copied to the opposite face in order to impose periodicity
of the microstructure.

Note that, by contrast with Pierard et al. [34], the extension of
the RSA algorithm proposed here takes into account an arbitrary
orientation of inclusions. This algorithm can be used to generate
random microstructures containing spherical, spheroidal or gen-
eral ellipsoidal inclusions distributed in a monodisperse or polydis-
perse manner.
lydisperse ellipsoidal inclusions and homogenization estimates for porous
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2.1. Microstructure description

Let us consider a cuboidal unit-cell (UC) with dimensions L1; L2
and L3 and made of Np phases with volumes V ðrÞ (r ¼ 1; . . . ;Np),

such that
PNp

r¼1V
ðrÞ ¼ V . The UC comprises distinct families of ellip-

soidal inclusions with volume fraction f ðrÞ ¼ V ðrÞ=V , aspect ratios

xðrÞ
1 ¼ cðrÞ=aðrÞ and xðrÞ

2 ¼ cðrÞ=bðrÞ (r ¼ 2; . . . ;Np) embedded in a

matrix phase (r ¼ 1). The vectors nðrÞ
i (i ¼ 1; . . . ;3) form an

orthonormal basis attached to the ellipsoid (Fig. 1). A family of
inclusions is a phase characterized by NðrÞ inclusions which have
the same elastic properties, size, shape and orientation. For sim-
plicity in the following, attention is restricted to inclusions which
have the same constitutive properties. The extension to different
ones is straightforward and has been described for spherical inclu-
sions in [33].

In this study, a monodisperse periodic microstructure is repre-
sented by a UC with randomly orientated inclusions having the
same size and shape while a polydisperse microstructure refers
to inclusions of different (relative) size and/or shape. Following
[27] for the generation of polydisperse microstructure, we define
a reference size of inclusion which is used to calibrate every other
inclusion phase/size. The reference size, for consistency with the
monodisperse microstructures, is defined via a reference number

of monodisperse inclusions, Nref , so that Nref 6 N with

N ¼PNp
r¼2N

ðrÞ being the total number of inclusions with volume

fraction f ¼PNp
r¼2f

ðrÞ and aspect ratios xref
1 and xref

2 . The number

Nref , the volume fraction f and the reference shape (xref
1 ; xref

2 )
allows to obtain uniquely the reference size of the inclusions in
the unit-cell. In the following, we identify the different cases
resulting from the above descriptions.

2.1.1. Polydisperse only in size
We consider inclusions of different size but same shape imply-

ing that the shape of all inclusions coincides with the reference

one: xref
1 ¼ xðrÞ

1 and xref
2 ¼ xðrÞ

2 (r ¼ 2; . . . ;Np). For instance, one
can take the first family of inclusions to be the reference one and
set one of its axes, say for instance cref equal to 1. The lengths of
the semi-axes of the reference inclusions are then given by

aref ¼ cref

xref
1

; bref ¼ cref

xref
2

; cref ¼ 3Vfxref
1 xref

2

4pNref

 !1=3

: ð1Þ

The semi-axes lengths of the other inclusions are determined by
using cref and the size coefficient vðrÞ, such that

cðrÞ ¼ vðrÞcref aðrÞ ¼ cðrÞ

xðrÞ
1

; bðrÞ ¼ cðrÞ

xðrÞ
2

; vðrÞ 6 1: ð2Þ
Fig. 1. Cubic unit-cell and reference ellipsoid geometry, defined by the aspect ratios x
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In practice, the microstructure is generated by starting with the
phase ðrÞ which has the largest size vðrÞ until its concentration f r is
reached. The process is continued sequentially with the second lar-

gest phase and so on until
PNp

r¼2f
ðrÞ ’ f . Note that contrary to the

monodisperse case, the targeted volume fraction is only approxi-
mately attained. The addition of inclusions of decreasing sizes
allows to get a better accuracy on the volume fraction and to reach
higher volume fractions.

2.1.2. Polydisperse only in shape
In this case, the inclusions are defined by different shapes (i.e.

different xðrÞ
1 and xðrÞ

2 for different r) but have the same volume.
The reference inclusion is then for simplicity taken to be a sphere

of radius Rref , and the calibration is done with respect to the vol-
ume of this sphere by setting

Rref ¼ 3Vf ref

4pNref

 !1=3

: ð3Þ

This amounts to define the characteristic lengths of the semi-
axes of each family of inclusion as

aðrÞ ¼ cðrÞ

xðrÞ
1

; bðrÞ ¼ cðrÞ

xðrÞ
2

; cðrÞ ¼ xðrÞ
1 xðrÞ

2

� �1=3
Rref : ð4Þ

In this case, there is no preferential order in the random gener-
ation of inclusion/phases since they all have the same relative size.
One can then begin with the phase r which has the smallest vol-

ume fraction f ðrÞ and progress until
PNp

r¼2f
ðrÞ ’ f . It is worth noticing

that instead of using a reference number of inclusions Nref to define

a reference size, one can use directly a reference radius Rref .

2.1.3. Polydisperse in shape and size
This case is a simple combination of the two previous cases. In

this general case, the relative size of each family of inclusions is

determined using V ðrÞ ¼ 4pðvðrÞRref Þ3=3, where Rref is given by (3).
Again, the sequential addition process needs not to have a prefer-
ential order neither in terms of size nor in shape. Nonetheless, as
mentioned previously, starting with the largest size of inclusion
proves useful for attaining a better accuracy on the volume fraction
as well as for reaching higher compacities.

2.2. Description of the extended RSA algorithm

In this section, we describe briefly the main steps of the
extended RSA algorithm (see Appendix A for more details). The
inputs of the algorithm are: the dimensions of the cuboidal cell
L1; L2 and L3, the volume fraction f, the number of phases Np, the

number Nref of reference inclusions, the microstructural parame-
ðrÞ
1 ¼ cðrÞ=aðrÞ and xðrÞ

2 ¼ cðrÞ=bðrÞ and the orientation vectors nðrÞ
i (with i ¼ 1;2;3).

lydisperse ellipsoidal inclusions and homogenization estimates for porous
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ters xðrÞ
1 ;xðrÞ

2 ;vðrÞ; f r and two offsets distance n1 and n2 used in the
calculation of the minimum distance parameters s1 and s2, respec-
tively. In this work, these parameters are fixed at n1 ¼ 0:02 and
n2 ¼ 0:05, however they are user-defined and can be changed at
will. In general, the highest the volume fraction the smallest should
be n1 and n2. When the desired volume fraction of the inclusions is
moderate to low (< 20%), one can increase those values to obtain
more uniform distributions. The outputs of the algorithm are: the

position vector of the center of the ellipsoid vðrÞ
i , the semi-axes

lengths (aðrÞi ; bðrÞ
i ; cðrÞi and the Euler angles (/ðrÞ

i ; hðrÞi ; wðrÞ
i ) of the ellip-

soidal inclusion i belonging to the phase r. To determine periodic
images of an inclusion, 26 vectors m ¼ ðm1;m2;m3Þ are defined,
where m1;m2 and m3 take the values ð0;�L1; L1Þ; ð0;�L2; L2Þ and
ð0;�L3; L3Þ, respectively.

Specifically, for each phase r ¼ 2; . . . ;Np, the RSA algorithm can
be decomposed into four steps:

Step 1: Compute the semi-axis lengths of inclusion ðiÞ
Please
elastic
cðrÞi ¼ vðrÞ xðrÞ
1 xðrÞ

2

� �1=3
Rref ; bðrÞ

i ¼ cðrÞi =xðrÞ
2 and aðrÞi

¼ cðrÞi =xðrÞ
1

with Rref given by (1). For non-spherical inclusions, specify

the orientation with Euler angles (/ðrÞ
i ; hðrÞi ; wðrÞ

i ).

Step 2: In the sequential addition, generate a random center posi-

tion vector vðrÞ
i for inclusion i in phase r. Compute the min-

imum distance D1 between a new inclusion i and any
previously accepted inclusion j ¼ 1; . . . ; i� 1 including its
26 periodic images, and compare this distance to the min-
imum value s1
s1 ¼ max aðrÞi ; bðrÞ
i ; cðrÞi

� �
þmax aðrÞj ; bðrÞ

j ; cðrÞj

� �� �
� n1

In this step, the algorithm for finding the minimum dis-
tance between two ellipsoids (see Algorithm 2 in Appendix
A) is called. If D1 < s1, generate a new inclusion center posi-
tion and recheck the overlapping and minimum distance
from existing ellipsoids. If D1 P s1 proceed to Step 3.
Step 3: Use the algorithm for finding the minimum distance
between ellipsoid and plane (see Algorithm 3 in Appendix
A) to determine D2 and D2. Compare the distance D2 with
the minimum value s2
s2 ¼ ðmaxðaðrÞi ; bðrÞ
i ; cðrÞi ÞÞ � n2

If D2 < s2, then generate a new center position of inclusion
i, otherwise accept the inclusion i.
1 Alternatively, one could check the intersection of two ellipsoids by solving two
one-dimensional quadratic inequalities at each iteration, as in [36], but this is more
time consuming.
Step 4: Ensure periodicity of the cuboidal cell by considering peri-
odic images of the inclusion (see Section 2.5 below).

In the following, we describe in details the last three steps of the
RSA procedure.

2.3. RSA Step 2: minimum distance between two ellipsoids

In this section, we discuss the evaluation of the distance
between two ellipsoidal inclusions. This step is extremely impor-
tant since it allows to decide if a newly added inclusion is accepted
or rejected. Specifically, the distance between two non-spherical
inclusions is not simply determined by using the center-to-center
distance, as is the case with spheres. There are many studies in lit-
erature devoted to the determination of the minimum distance
between two implicit algebraic surfaces. For example, in the recent
work of Chen et al. [35], a useful analytical method has been pro-
posed to compute this distance. The drawback is that this method
cite this article in press as: Anoukou K et al. Random distribution of po
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leads to a very complicated system of three non-linear equations of
degrees 2, 3 and 6 to be solved, at least in the case of two ellipsoids.
In the work of Pierard et al. [34] on elasto-plastic composite mate-
rials reinforced with aligned elastic ellipsoidal particles, an algo-
rithm proposed by Lin and Han [36] is used to determine
iteratively the minimum distance between two ellipsoids. This
algorithm based on the local approximation of the ellipsoid by a
spherical ball has excellent convergence properties. This approach
is simple and easy to implement in the present study. Hence, fol-
lowing [36], we implement and embed in the RSA algorithm a
slightly modified version of the algorithm. The modification con-
sists in a much simpler and more general way to check the non-
overlapping condition of inclusions during the sequential addition.
In Lin’s algorithm, the non-overlapping is checked by solving two
one-dimensional quadratic inequalities at each iteration. With
our modification, we are able to check this condition once by using
a lemma on the intersection of ellipsoids proposed in the book of
Kurzhanski and Vályi [37]. For clarity, in this section, the super-
script ðrÞ denoting the different ellipsoidal families is omitted.

2.3.1. Statement of the problem
Given two non-overlapping arbitrarily oriented ellipsoids E1

and E2 defined respectively by En ¼ Eðvn;ZnÞ;n ¼ 1;2, such that

Eðvn;ZnÞ :¼ x : QnðxÞ 6 0f g: ð5Þ
Qn denotes a quadratic function which reads

QnðxÞ ¼ ðx� vnÞTZnðx� vnÞ � 1 ð6Þ
with vn the vector position of the center of the ellipsoid. In turn, the
matrix Zn describes the shape and the orientation of the ellipsoid En

and is a positive definite square 3� 3 matrix. Its eigenvalues are the
reciprocals of the squares of the semi-axes lengths of the ellipsoid
(i.e., a; b; c and equivalently the aspect ratios x1 and x2) and its
eigenvectors ni (i ¼ 1;2;3) define the principal axes of the ellipsoid
En (Fig. 1). For an arbitrarily oriented ellipsoid Eðv;ZÞ with center
position v, the matrix Z is defined as

Z ¼ 1
c2

x2
1n1 � n1 þx2

2n2 � n2 þ n3 � n3
� �

: ð7Þ

The orientation of the ellipsoid is specified by the rotation
matrix Rð/; h;wÞ such that ni ¼ Rei (i ¼ 1;2;3). (e1; e2; e3) defines
an orthonormal basis of the reference frame (Fig. 1). When
R ¼ I; E is thus an axis-aligned ellipsoid (i.e. its principal axes coin-
cide with the reference frame axes). The minimum distance
between two ellipsoids reads

dðE1; E2Þ ¼ min
x12X1 ; x22X2

kx1 � x2k ð8Þ

whereX1 andX2 represent the boundaries of the ellipsoids E1 and E2.

2.3.2. Algorithm on the local approximation of the ellipsoid by ball
Before we proceed further, it is recalled that one of the main

conditions that need to be checked is that the distance between
the ellipsoids shall not exceed a user-defined value s1. Therefore,
the procedure of evaluating the distance between two different
ellipsoids can be split in two main parts. The first part consists in
checking whether the ellipsoids overlap/intersect. Provided that
the ellipsoids do not overlap, one can then proceed to the second
part and evaluate the distance between the two ellipsoids.

First part. In the present work, we propose a simple method to
check if the ellipsoids intersect at one or more point by using the
lemma of Kurzhanski and Vályi [37] which reads1:
lydisperse ellipsoidal inclusions and homogenization estimates for porous
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Two ellipsoids E1 and E2 have a nonempty intersection if, and only
if, there exists an ellipsoid Ea ¼ Eðva;ZaÞ, for any a 2 0;1½ �, such that
detðZaÞ > 0 with

Za ¼ 1
1� ha

X2
n¼1

anZn; a1 ¼ a; a2 ¼ 1� a; ð9Þ

where

ha ¼
X2
n¼1

an vn � Zn � vnð Þ �
X2
n¼1

anZn � vn

 !
� va and va

¼
X2
n¼1

anZn

 !�1 X2
n¼1

anZn � vn

 !
:

The use of this lemma has the advantage of checking only once the
overlapping condition of any pair of ellipsoids.

Second part. If the ellipsoids do not intersect, we proceed to
solve the minimization problem (8). The basic idea for solving
numerically this problem is due to Lin and Han [36], who proposed
an iterative resolution in which each ellipsoid En is approximated
locally in its interior by a spherical ball which marches along the
internal surface of the ellipsoid, i.e. the spherical ball is tangent
to the ellipsoid at a single point xn 2 Xn (Fig. 2). The spherical ball
Bn ¼ Bðcn; rnÞ (n ¼ 1;2) is defined by

Bðcn; rnÞ :¼ y : ky � cnk 6 rnf g; ð10Þ
with

cn ¼ xn � cn
2
Nn and rn ¼ cn

2
kNnk:

Here, Nn ¼ rQn is the normal to the ellipsoid En at the point
xn 2 Xn. The parameter cn is a measure (matrix norm) of the matrix
Zn related to its spectral radius qðZnÞ, such that

0 < cn 6 1
qðZnÞ and cn ¼ 1

kZnkF
ð11Þ

where k � kF indicates the Frobenius (Euclidean) norm.
The algorithmic process involving both parts is schematically

explained in Fig. 2 and can be described as follows:

Step 1: Check the overlapping at the beginning of iterations using
(9). If detðZaÞ > 0, then set the minimum distance
dðE1; E2Þ ¼ 0 and terminate, otherwise continue to
Initialization.
Initialization:
Choose the centers v1 and v2 of E1 and E2 as starting inte-
rior points c1 and c2, respectively.

Step 2: Let us denote by ck1 and ck2 two arbitrary interior points at

the kth iteration of the ellipsoids E1 and E2, respectively.
Fig. 2. Geometrical representation of iterative steps for fin

Please cite this article in press as: Anoukou K et al. Random distribution of po
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We generate two points xkþ1
1 and xkþ1

2 as the intersections
of the segment ck1; c

k
2

� �
with the ellipsoid surfaces X1 and

X2, so that xkþ1
1 ¼ ck1 þ t1ðck2 � ck1Þ and

xkþ1
2 ¼ ck1 þ t2ðck2 � ck1Þ, where t1 and t2 are solutions of

the two one-dimensional quadratic equations:
ding th

lydispe
18.08.0
tn ¼ t 2 0;1½ � : Ant2 þ Bnt þ Cn ¼ 0
� 	

; n ¼ 1 or 2; ð12Þ

with An ¼ ðck2 � ck1Þ
T
Zn ðck2 � ck1Þ, Bn ¼ ðck1 � vnÞTZn ðck2 � c1Þ

and Cn ¼ ðck1 � vnÞTZn ðck1 � vnÞ.
These two points are the closest points and hence the best
candidate of the minimum distance if and only if the nor-

mals Nkþ1
1 and Nkþ1

2 and the vector xkþ1
1 � xkþ1

2 are colinear.
Step 3: If the angles \ðNkþ1
1 ;xkþ1

2 � xkþ1
1 Þ and \ðNkþ1

2 ; xkþ1
1 � xkþ1

2 Þ
are null, set dðE1; E2Þ ¼ kxkþ1

1 � xkþ1
2 k, accept the new ellip-

soid and move on to the addition of a new ellipsoid, other-
wise continue to Step 4.

Step 4: Construct two new ball centers ckþ1
1 and ckþ1

2 of B1 and B2,
respectively, as
ckþ1
n ¼ xkþ1

n � cn
2
Nkþ1

n ; n ¼ 1;2 ð13Þ

and return to Step 2.
This algorithm is given in full detail in Appendix A.

2.4. RSA Step 3: minimum distance between an ellipsoid and a plane

In this section, we determine the minimum distance between
an ellipsoid E and a plane P. It is worth noting that if the ellipsoid
intersects a plane, the terminology minimum distance from a point
lying on an ellipsoid to a plane is more appropriate. Then, this dis-
tance is obtained by solving a geometrical problem for finding the
closest point on the boundary X of the ellipsoid E where the nor-
mal N ¼ rQðxÞ is collinear to the normal of the plane. Knowing
this closest point, one can verify the second geometric condition
and then impose the periodicity condition mentioned previously.

Any surface of the cuboidal cell is defined by a plane equation
given as

Pðn;gÞ :¼ y : y � nþ g ¼ 0f g ð14Þ
where n is the normal unit vector of the plane P, and d is a constant
obtained as a scalar product of n and a known point on P. For a
cuboidal cell with dimensions L1; L2 and L3, with a corner as origin,
let us adopt the following convention: n ¼ ð�1;0;0Þ and g ¼ 0
! face 1;n ¼ ð1;0; 0Þ and g ¼ �L1 ! face 2;n ¼ ð0;�1; 0Þ and
g ¼ 0 ! face 3;n ¼ ð0;1;0Þ and g ¼ �L2 ! face 4;n ¼ ð0;0;�1Þ
e minimum distance between two ellipsoids.

rse ellipsoidal inclusions and homogenization estimates for porous
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and g ¼ 0 ! face 5 and n ¼ ð0;0;1Þ and g ¼ �L3 ! face 6. The
problem to solve then reads

N� n ¼ 0 and QðxÞ ¼ 0: ð15Þ
The solutions of (15) are two points x1 and x2 representing the

closest and the farthest points, or vice versa depending on the face
of the cuboidal cell. The related minimum or the maximum dis-
tance, denoted as dðE;PÞ, is obtained by using the formula giving
the distance of a point x to a plane

dðE;PÞ ¼ jx � nþ gj
knk ð16Þ

Obviously, the farthest point from a plane with g ¼ 0 is the clos-
est one to the opposite plane with g ¼ �L1. In practice, to distin-
guish the nearest and the farthest points, one can determine the
two distances corresponding to the two solutions at fixed n and
g and then take the minimum. We denote by xmin the solution
(15) which minimizes the distance dðE;PÞ. The corresponding algo-
rithm is detailed in Appendix A. D2 is the minimum distance and D2

denotes the quantity n � xmin þ g.

2.5. RSA Step 4: enforce periodicity of the cuboidal cell

To impose the periodicity of the microstructure in the cuboidal
cell, any inclusion i that intersects any of the cuboidal cell faces j
defined by the normal n and g is relocated at the opposite face
by adding or subtracting the vector m to the center of the inclu-
sion. To do this, the sign of D2 ¼ n � xmin þ g must be checked. If
the inclusion intersects the face j;8 j 2 1;3;5f g;D2 < 0, and
8 j 2 2;4;6f g;D2 > 0. In the more general case that the ellipsoid
Fig. 3. Illustrative examples of microstructures obtained with the proposed RSA algorithm
shape with x1 ¼ x2 ¼ 0:2 (oblate) and x1 ¼ x2 ¼ 5 (prolate), (c) unidirectional polydis
size and shape.
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intersects three orthogonal faces, it is duplicated to the remaining
seven corners of the cuboid. If the ellipsoid intersects only two
faces then it is duplicated to the three faces that share the same
normals. Finally if the ellipsoid intersects only one face, it is dupli-
cated to the opposite face of the cuboid.

2.6. Illustrative examples

Fig. 3 shows four representative microstructures obtained with
the proposed RSA algorithm for a volume fraction f ¼ 20%.

3. Determination of effective elastic properties

In this section, we discuss the computation of the effective elas-
tic properties of periodic porous random particulate materials with
an elastic isotropic matrix by considering 3D cubic unit-cells V
(L1 ¼ L2 ¼ L3 ¼ L ¼ 1) with periodic boundary conditions. We anal-
yse monodisperse and polydisperse microstructures consisting of
random and uniform void distributions with three types of shapes;
(i) spherical pores, (ii) prolate spheroidal pores (x1 ¼ x2 ¼ x > 1)
with aspect ratios x ¼ 2 and x ¼ 5 and (iii) oblate spheroidal
pores with aspect ratios x ¼ 0:1 and x ¼ 0:5. The effective elastic
properties of those microstructures are obtained through numeri-
cal periodic homogenization. In all subsequent calculations, the
elastic properties of the matrix phase are set to: Young’s modulus
E ¼ 1 GPa and Poisson’s ratio m ¼ 0:3.

3.1. Numerical homogenization

The numerical computation of the linear effective elastic proper-
ties is carried out using the fast Fourier Transform (FFT) numerical
. Volume fraction f ¼ 20%. (a) and (b) Randomly oriented monodisperse in size and
perse in size with x1 ¼ x2 ¼ 3 (prolate) and (d) randomly oriented polydisperse in
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scheme and the finite element (FE) method. The FEM calculations
have been performed with the commercial software ABAQUS in
the context of linear elasticity and small strains. The application of
the periodicity conditions is discussed in the next section. The
FFT-based numerical approach has been proposed by Moulinec
and Suquet [38] to solve periodic boundary-valued heterogeneous
unit-cell problems. The principle of this method is to solve itera-
tively the implicit integral equation for the strain field eðxÞ

eðxÞ ¼ Eþ
Z
V
Cð0Þðx� x0Þ : sðx0Þdx0; sðxÞ ¼ ðCðxÞ � Cð0ÞÞ : eðxÞ

ð17Þ
with E the macroscopic strain and Cð0Þ denoting the strain Green
operator corresponding to a reference homogeneous medium with
elasticity Cð0Þ. Following [39], (17) is usually called the Lippman-
Schwinger equation by analogy with the quantum mechanics scat-
tering theory. Developments of the FFT-based method have been
proposed by several authors, in particular to improve its conver-
gence in the case of a high mechanical contrast on the local proper-
ties (see, among others, 40–43). In the present study, we have used
the augmented Lagrangian scheme originally proposed by Michel
et al. [41] and later reinterpreted by Moulinec and Silva [44] as a
special case of the polarization-based scheme of Monchiet and Bon-
net [43].

At this point it is important to note that the FE approach may
require tedious meshing that more than often does not converge,
especially for penny-shaped (resp. elongated) inclusions present-
ing very low (resp. high) aspect ratios. This is the case in the pre-
sent work for oblate spheroids with aspect ratio lower than 0.3
and for prolate spheroids with aspect ratio higher than 3. By con-
trast, in the FFT method, a regular grid is employed to discretize
the unit-cell (i.e. voxel-based meshing). To describe accurately
the highly elongated ellipsoids, a large number of voxels is
required but finally yields to converged results. A convergence
analysis with respect to the number of voxels, the number of pores
and the number of realizations is presented in Appendix B. To
assess the relative accuracy of the results obtained with the FFT-
based method and the FE method, we carry out in Section 3.2 cal-
culations for randomly oriented, monodisperse pore microstruc-
tures with aspect ratios equal to 0.5, 1 and 2.

3.1.1. Periodic boundary conditions and effective stiffness tensor
For both numerical techniques, the unit-cell is subjected to

periodic boundary conditions [45,46]. The displacement field u
can be split into an affine part E � x and a periodic correction term
u�ðxÞ such that

uðxÞ ¼ E � xþ u�ðxÞ; 8x 2 V ; ð18Þ
where E is the overall strain which is equal to the average strain in
the unit-cell (E ¼ hei)2 and u� is a periodic field characterizing the
fluctuation of the displacement due to the presence of the hetero-
geneities. The local strain field eðxÞ deriving from the displacement
u thus admits the following decomposition eðxÞ ¼ Eþ e�ðxÞ with
he�ðxÞi ¼ hrsu�ðxÞi ¼ 0. The components of u� take identical values
at points on opposite faces of the unit-cell, in such a way that, con-
sidering a Cartesian frame of reference with origin placed at a corner
of the cubic unit cell and axes ek (k ¼ 1;2;3) are aligned with the
principal axes of the cubic unit cell, we have [47]

ukðL; x2; x3Þ � ukð0; x2; x3Þ ¼ Ek1L;

ukðx1; L; x3Þ � ukðx1;0; x3Þ ¼ Ek2L;

ukðx1; x2; LÞ � ukðx1; x2;0Þ ¼ Ek3L

ð19Þ
2 In the sequel, the angular brackets h�i denote the average of a field over the unit-
cell.
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with k ¼ ð1;2;3Þ. These relations constitute simple linear con-
straints that can be entered in any numerical code with a number
of available techniques, such as elimination, Lagrange multipliers
and penalty methods. In the context of our FE calculations in the
Abaqus software, the linear constraint Eq. (19) are implemented
by use of the �Equation command, which uses the elimination tech-
nique. As a practical remark for the finite element calculations,
keeping the origin of the unit-cell fixed, loadings were done at its
three corners having coordinates ðL; 0;0Þ; ð0; L;0Þ and ð0;0; LÞ since
the periodic boundary conditions (19) can be rewritten in terms
of the displacements of these three corner nodes (see details in
Appendix B of [48]). The equations relating the displacements of
the nodes on opposite faces of the unit-cell were coupled to those
of the corner nodes. Note that the above procedure can be applied
to any cuboidal shape. In the special case of voids, one should make
sure that no void (nodeless point) is lying in any of the above four
corners.

Once the local stress and strain fields are calculated, the effec-

tive stiffness tensor eC is obtained with the relation between aver-
age stress and strain tensors

hri ¼ eC : hei ð20Þ
The computation of the twenty-one independent coefficients ofeC is classically done by considering six independent macroscopic

strain loadings.

3.1.2. Deviation from isotropy
Theoretically, a completely random distribution and orientation

of ellipsoidal inclusions leads to an isotropic effective response. In
practice, due to the finite number of inclusions and/or pores in the

unit-cell, the resulting numerical effective stiffness tensor eC is not
exactly isotropic. To evaluate the deviation from isotropy of the

tensor eC, use is made of its isotropic projection eCiso on the
fourth-order deviatoric and hydrostatic isotropic tensors

eCiso ¼ 3ej Jþ 2elK with ej ¼ 1
3
eC :: J ¼ 1

9
eCiijj and

el ¼ 1
10
eC :: K ¼ 1

10
eCijij � 9ej� �

: ð21Þ

Here, ej and el are the isotropic bulk and shear moduli. The iso-
tropic projectors are defined by

J ¼ 1
3
i� i and K ¼ I� J ð22Þ

with i and I the identity tensors, respectively for symmetric second
and fourth-order tensors. Note that J andK are orthogonal idempo-
tent tensors, i.e. J : J ¼ J;K : K ¼ K, and J : K ¼ K : J ¼ O.

The deviation from isotropy can be quantified in two ways:
either geometrically (material symmetry) or mechanically (elastic-
ity symmetry). On the one hand, the geometrical approach3 makes
use of morphological descriptors such as statistical correlation func-
tions to characterize statistically the microstructure (e.g. two-point
probability function is often used to quantitatively ascertain at least
lower-order information on the geometrical arrangement of phases).
On the other hand, the mechanical approach consists in evaluating
the deviation from elastic isotropy by choosing an appropriate mea-
sure of the elasticity tensor. One of the first measure of this kind is
the well-known Zener ratio [50], for cubic symmetry materials,
which is simply the ratio of the shear moduli. Later on, several
covariance function related to the covariograms of plane section images of the
microstructure while Segurado and Llorca [24] have used the radial distribution
function of sphere centroids to assess the randomness of the particle distribution, and
hence the isotropy of the microstructure.
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Table 1
Relative difference between the FE and FFT computations of the effective bulk and
shear moduli for three different microstructures.

f ð%Þ Monodisperse microstructures

Sphere Oblate (x ¼ 0:5) Prolate (x ¼ 2)
(dej ; del ) (%) (dej ; del ) (%) (dej ; del ) (%)

5 (0.82, 0.86) (2.2, 1.71) (1.51, 0.86)
15 (2.12, 1.75) (6.32, 5.24) (8.73, 7.43)
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authors have addressed the more general question of the distance
between two elasticity tensors of given symmetry (see, for instance,
51–54). At this point, it is worth recalling that the symmetry of a
physical property (elasticity, for instance) is necessarily equal or
higher than the material symmetry. Consequently, the geometrical
isotropy implies the mechanical isotropy but not the other way
around. In addition, in the RVEs studied here one can never obtain
an exact geometrical isotropy due to the finite number of the embed-
ded inclusions and the periodicity of the unit cell. In this case then, it
is extremely difficult to estimate quantitatively the deviation from
mechanical isotropy (which is the measure of interest in this study)
by using the deviation from geometrical isotropy.

The present study is, thus, focused on the analysis of the iso-
tropy of the overall elastic response for different random distribu-
tions of ellipsoidal voids in the matrix. The deviation from isotropy

diso of the effective elasticity tensor eC is evaluated with the normal-
ized common Euclidean distance

diso ¼ keC � eCisokF
keCkF

ð23Þ

where kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr A : AT� �q

is the Frobenius norm of the tensor A.

The value of diso ¼ 0 thus corresponds to isotropy. This approach
has been previously used, for example, in [55] for the case of linear
elastic response of ellipsoidal particles reinforced composites, as
well as for nonlinear mechanical responses [27,20].

3.2. Assessment of FFT and FE numerical computations

FE calculations of the effective elastic properties were carried
out using the FE package [56], only on monodisperse microstruc-
tures with pores aspect ratios 0:5;1 and 2 and volume fractions
5% and 15%. The mesh generator NETGEN [57] was used to create
meshes of the unit-cell with ten-node quadratic tetrahedral ele-
ments (C3D10 in ABAQUS notation). For certain microstructures
containing spheroidal pores, we faced severe convergence issues
with the meshing procedure when using quadratic ten-node ele-
ments. To overcome these difficulties, we have resorted to linear
four-node tetrahedral elements (C3D4 in ABAQUS notation) and
substantial increase of the number of elements to compensate
for the inaccuracy of the linear shape functions. For microstruc-
tures with spherical voids, a number of pores N ¼ 30 is found to
be sufficient for convergence. However, for non-spherical voids
and large porosities, convergence could require a much larger
number of pores (more than N ¼ 500). Unfortunately, in that case
the FEM calculations become substantially heavy. To keep the
number and time of FEM calculations tractable, we have chosen
to use N ¼ 100 for microstructures with spheroidal pores to get
only an idea of the FEM outcome. This issue has motivated the
use of the FFT numerical scheme in the rest of this study.

The FFT calculations have been performed on a regular grid with
128� 128� 128 voxels. The choice of this spatial resolution is justi-
fied by the convergence analysis in terms of number of voxels pre-
sented in Appendix B (Fig. B.1). In particular, for monodisperse
prolate and oblate spheroids with aspect ratios x1 ¼ x2 ¼
2 and 0:5, respectively, a number of pores N ¼ 500 was found to
be sufficient for achieving representativity (Fig. B.2). In the case of
spherical voids,N ¼ 30pores are sufficient to obtain accurate results
as for the FE computations. Note that the material properties have
been assigned to each voxel as follows: if the center of a voxel does
not belong to any ellipsoid, then the entire voxel has themechanical
properties of the matrix, otherwise the voxel has null mechanical
properties (void). It can be mentioned that improved methods
allowing for the use of ‘‘filtered” elastic properties (smoother transi-
tions) between neighboring phases have been proposed [42,58].
Please cite this article in press as: Anoukou K et al. Random distribution of po
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In Table 1, the effective bulk and shear moduli (ej; el) computed
with the FFT method are compared to those calculated with the
FEM. The comparison is done by calculating the relative differences
dej and del . Note that in all calculations, the effective moduli

obtained with the FFT scheme are smaller than the one obtained
with the FE method. It can be observed in Table 1 that for all
microstructures the differences are relatively small, keeping in
mind that the FE results are obtained for a smaller number of pores
than the FFT ones for ellipsoidal voids. Consistently, in the case of
spherical voids, the FE and FFT results are in very good agreement.
For the reasons evoked above, all results reported in the sequel
have been obtained with the FFT numerical method.

In closing this section, it is relevant to mention that the present
RSA algorithm can deal with extremely elongated inclusion shapes,
such as aspect ratios of 0.001 or 1000. Nonetheless, their dis-
cretization becomes prohibitive in the FEM context, while extre-
mely large numbers of voxels would be required to achieve
convergence with the FFT formulation. Furthermore, one should
also be careful when analyzing very elongated ellipsoids since they
tend to cracks and thus can lead to numerical singularities. In those
cases, perhaps the analytical approach would be more appropriate,
especially in the linear elasticity context.
4. Results

The FFT results have been obtained with Nref ¼ 50 for the spher-

ical voids and Nref ¼ 500 for the spheroidal voids. To make the pre-
sent section concise but representative, we have chosen to
consider spheroidal prolate and oblate void (i.e. x1 ¼ x2 ¼ x). In
the sequel, x ¼ 1 refers to spherical, x < 1 for oblate and x > 1
for prolate voids.

Next, it is recalled that Nref ¼ N ¼ 500 for the case of monodis-
perse microstructures. For the case of polydisperse microstruc-
tures, we have used four different phases or equivalently four
different relative sizes of voids (but same shapes) with size coeffi-
cient vðrÞ ¼ 1;0:7;0:4;0:1 (i.e. the volume of the larger inclusion is
ten times the one of the smaller one) and volume fraction distribu-

tion f ðrÞ ¼ f0:5;0:3;0:15;0:05g � f such that
PN

r¼2pf
ðrÞ ¼ f (with

Np ¼ 4 being the number of families/phases). A value of

Nref ¼ 500 leads on average to 800–1500 inclusions of different
sizes. The final number depends on the random process, the choice
of the number of families/phases Np and the size coefficient. In this
connection, it is perhaps important to mention that at high volume
fractions, where lies the main difficulty in obtaining elongated
inclusion shapes, the resulting polydisperse microstructures with
different final number of voids provide almost identical responses,
which for the case of voids are in close agreement with the corre-
sponding monodisperse ones. This is a strong indication of conver-

gence given the Nref used in our calculations. In addition to this
observation, the deviation between various realizations both in
mono- and polydisperse microstructures is extremely small and
for that reason no error bars are shown in the results that follow.

The numerical FFT results are also compared with HSW analyt-
ical estimates which are obtained by employing the approach pro-
lydisperse ellipsoidal inclusions and homogenization estimates for porous
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posed by Gatt et al. [15], see also [59], for isotropic composites
comprising randomly oriented polydisperse ellipsoidal voids. In
Fig. 4, the deviation from isotropy diso (c.f. Eq. (23)) is shown for
monodisperse and polydisperse microstructures. Hence, the spher-
ical voids lead to the most isotropic effective response with
diso < 0:5% for both monodisperse and polydisperse distributions.
As one increases or decreases the aspect ratios from unity to get
either prolate or oblate shapes, the deviation from isotropy
increases. Even for a high number of inclusions, the transversely
isotropic shape of the void affects the evaluation of the elastic
properties. The deviation is markedly strong for oblate voids with
aspect ratios x ¼ 0:1, where diso 	 24% for both monodisperse
and polydisperse distributions at volume fractions f > 15%. This
implies that even if theoretically one can consider very large num-
ber of orientations, in practice, with our present RSA method, a sig-
nificant effect of the void shapes remains and lead to an anisotropic
response.

In the rest of the study, we show only the isotropic parts corre-
sponding to spheroidal voids and compare them with exactly iso-
tropic (i.e. infinite number of orientations) analytical results.
Nonetheless, their interpretation should be done with caution since
the numerical estimates exhibit in some cases (such as x ¼ 0:1)
strong deviation from isotropy. Moreover, it is noted that using a
larger number of realizations does not reduce significantly the devi-
ation from isotropy in these extreme cases since already a very
large number of voids (	 1500) is considered in a single unit-cell.
Fig. 4. Deviation from isotropy in monodisperse microstructures compared against
that in polydisperse microstructures for different pores aspect ratios
x ¼ 0:1;0:5;1;2 and 5.

Fig. 5. Comparison between FFT and HSW estimates for monodisperse and polydisperse
normalized bulk modulus ej=j1 and (b) shear modulus el=l1.
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4.1. Numerical versus analytical estimates for spherical, prolate and
oblate pores

Fig. 5 shows numerical (FFT) and analytical (HSW) results for
monodisperse and polydisperse spherical voids. We observe that
up to f ¼ 30%, the numerical results for monodisperse and polydis-
perse microstructures are almost identical and only slightly lower
than the HSW estimates, which in that case are also rigorous upper
bounds. Of course, it is progressively more and more difficult to
generate monodisperse distributions when the targeted volume
fraction f gets closer to the theoretical saturation value
f sat ¼ 38:4% [60]. By contrast, the polydisperse microstructures
can easily reach higher volume fraction. In this work, results are
shown up to f ¼ 50% but it is indeed possible to reach even higher
volume fraction [61].

In Fig. 6, FFT and HSW estimates for prolate monodisperse and
polydisperse voids with aspect ratios x ¼ 2 and 5 are reported.
First, it should be noted that by referring to Fig. 4, the maximum
deviation from isotropy occurs for x ¼ 5 and is diso ¼ 6%. There-
fore, the curves shown correspond to only the isotropic part of
the elastic properties as defined in (21). Again a minor difference
is observed between the mono- and polydisperse microstructures
with the later being only slightly more compliant. The numerical
estimates are still lower than the HSW ones with their difference
being larger for the shear modulus el.

Similar observations can be done also in the context of oblate
voids in Fig. 7. The estimates corresponding to the very elongated
voids with x ¼ 0:1 are substantially more compliant than the rest.
It is interesting to observe that the HSW analytical estimates are
very close to the numerical estimates but it is recalled that for
x ¼ 0:1 the deviation from isotropy is very large diso ¼ 24%. More-
over, one can observe that the effect of the aspect ratio is more pro-
nounced on the bulk modulus ej than in the shear modulus el. We
also note that in such extreme cases of elongated ellipsoids, it is
progressively more difficult to reach higher volume fractions even
with polydisperse sizes. For instance, in the case of x ¼ 0:1, we
were able to reach f ¼ 20% for the monodisperse and f ¼ 25%
for the polydisperse.
4.2. Effect of aspect ratio in polydisperse microstructures

Fig. 8 shows a comprehensive plot of the effect of the aspect
ratio for polydisperse microstructures upon the effective bulk
and shear moduli. We observe that spheroidal (prolate and oblate)
voids tend to make the material more compliant as already seen in
microstructures with spherical pores. Effective moduli as a function of porosity: (a)

lydisperse ellipsoidal inclusions and homogenization estimates for porous
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Fig. 6. Comparison between FFT and HSW estimates for monodisperse and polydisperse microstructures with prolate spheroidal pores. Effective moduli as a function of
porosity: (a) normalized bulk modulus ej=j1 and (b) shear modulus el=l1.

Fig. 7. Comparison between FFT and HSW estimates for monodisperse and polydisperse microstructures with oblate spheroidal pores. Effective moduli as a function of
porosity: (a) normalized bulk modulus ej=j1 and (b) shear modulus el=l1.

Fig. 8. Influence of the pore aspect ratio x on the evolution of the effective moduli as a function of the porosity: (a) normalized bulk modulus ej=j1 and (b) shear modulusel=l1.
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a number of studies (see, for instance, 15). The oblate voids tend to
lead to stronger drops of both ej and el than prolate ones but one
again should recall the strong deviation from isotropy for the
Please cite this article in press as: Anoukou K et al. Random distribution of po
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oblate voids. We close by noting that the spherical voids lead to
the less compliant response and hence are better candidates for
materials that can approach the Hashin-Shtrikman bounds.
lydisperse ellipsoidal inclusions and homogenization estimates for porous
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5. Concluding Remarks

In the present study, we extend the classical Random Sequential
Adsorption (RSA) algorithm to the context of randomly oriented
ellipsoidal inclusions of arbitrary size, shape and orientation (i.e.
polydisperse). The main algorithm is based upon a proper simplifi-
cation of Lin and Han [36] algorithm, which consists in employing
a more general way to check the non-overlapping condition of
inclusions during the sequential addition process. In that algo-
rithm, the non-overlapping condition is checked by solving two
one-dimensional quadratic inequalities at each iteration. Instead,
with our modification, we are able to check this condition once
by using a lemma on the intersection of ellipsoids proposed in
the book of Kurzhanski and Vályi [37]. The proposed algorithm is
described in detail, is robust and can be easily implemented.

Secondly, the present study analyzes numerically the effective
elastic properties of a large number of representative volume ele-
ments (RVEs) includingmonodisperse as well as polydisperse voids
randomly distributed in the unit cell. Those numerical estimates are
probed by the classical Hashin-Shtrikman-Willis (HSW) bounds
and estimates. The deviation from isotropy of the numerically-
obtained effective elastic tensors is critically assessed by using a
simple measure based on a normalized Euclidean distance between
two fourth order tensors and the Frobenius norm. In simple words,
we project the numerically obtained effective elastic tensor (which
may exhibit certain degree of anisotropy) to the isotropic fourth
order tensor space to obtain an ‘‘isotropized” one. The Euclidean
difference of the original tensor and the isotropized one, gives a
simple to understand scalar measure of the deviation of isotropy.

In this regard, we find that as the aspect ratios of the voids
increase (or decrease) substantially, the proposed RSA algorithm
leads to substantially anisotropic porous materials which can devi-
ate from isotropy by as much as 24% for oblate voids with aspect
ratio x1 ¼ x2 ¼ 0:1. This deviation is present even for very large
number of voids N > 500 both in the case of monodisperse and
polydisperse microstructures. The polydisperse microstructures
exhibit in principle lower anisotropy albeit an important one for
x1 ¼ x2 ¼ 0:1 (reaching 20%). Interestingly, the isotropized shear
and bulk moduli corresponding to the very elongated void aspect
ratios remain in good agreement with the corresponding isotropic
HSW estimates. As expected by previous works, the spherical voids
exhibit the stiffest response out of all cases considered.

In closing, we remark that the present RSA microstructures can
be used as a test bed for nonlinear analytical homogenization mod-
els in the context of finite strains and nonlinear mechanical and
multi-physics responses (see for instance studies in nonlinear elas-
ticity [27], in elasto-plasticity [47,62], as well as in nonlinear
magneto-elasticity [48,63]). Furthermore,with the current3Dprint-
ing technology such RVEs can be readily printed and experimentally
tested in the lab. Such work is in progress [61]. Finally, the present
algorithm can be potentially used to generate, 3D print and analyze
microstructures where the aspect ratios of the inclusions are pro-
vided by external sources (for instance imaging or 3D tomography)
via the use of sufficiently defined probability density functions
(PDFs) (see for instance the very recent work of [64] in this context).
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Appendix A. Extended RSA algorithm for randomly oriented
mono- and polydisperse inclusions

Nomenclature:

� L1; L2; L3: dimensions of the cuboidal unit cell
� f: total volume fraction of inclusions

� Nref : reference number of inclusions in the unit-cell (equal to
number of inclusions when monodisperse)

� Rref : Reference radius of a spherical inclusion
� Np: number of phases/families of inclusions (different shapes or
sizes correspond to different families/phases)

� xðrÞ
1 ;xðrÞ

2 : aspect ratios of the inclusions belonging to family r
� vðrÞ: size coefficient defining the allocation of sizes to the differ-
ent families

� f ðrÞ: volume fraction of each family r
� n1; n2: coefficients controlling the minimum distance between
inclusions and between the unit-cell faces and the inclusions

� vðrÞ
i (i ¼ 1;2;3): position vector of the center of an inclusion

belonging to family r

� aðrÞi ; bðrÞ
i ; cðrÞi : lengths of semi-axes of an inclusion belonging to

family r

� /ðrÞ
i ; hðrÞi ;wðrÞ

i : the three Euler angles defining the orientation of
the elliptical inclusion belonging to family r

� m ¼ ðm1;m2;m3Þ: total of 27 vectors defining the translational
periodicity of the cuboidal unit cell, where m1;m2 and m3 take
the values in all combinations 0;�L1; L1;0;�L2; L2 and 0;�L3; L3.

� D1;D2;D2: Distances between inclusion-inclusion and inclusion-
cuboidal face

� ZðrÞ: matrix describing the shape and orientation of inclusion
belonging to family r
Algorithm 1. Main program

1: Input: L1; L2; L3; f ;N
ref ;Np;x

ðrÞ
1 ;xðrÞ

2 ;vðrÞ; f ðrÞ; n1 and n2.

2: Ouput: vðrÞ
i ; aðrÞi ; bðrÞi ; cðrÞi ;/ðrÞ

i ; hðrÞi ;wðrÞ
i

3: Compute the characteristic length Rref ¼ 3Vf=4pNref
� �1=3

,

and vectors m
4: Initialize the number of inclusions i ¼ 1, and the actual

volume fraction f i ¼ 0
5: while f i 6 f do
6: for r ¼ 2 to Np do

7: if f �PNp�rþ2
s¼1 f ðsÞ 6 f i 6 f ðrÞ then

8: Compute the dimensions of the inclusion of each

phase cðrÞi ¼ vðrÞ xðrÞ
1 xðrÞ

2

� �1=3
Rref ; bðrÞi ¼ cðrÞi =xðrÞ

2 and

aðrÞi ¼ cðrÞi =xðrÞ
1

9: if xðrÞ
1 – 1 and xðrÞ

2 – 1 then

10: Give Euler angles /ðrÞ
i ; hðrÞi , and wðrÞ

i

11: end if

12: Assign a random center position vector vðrÞ
i

13: end if
14: end for

(continued on next page)
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15: forj ¼ 1 to i� 1 do
16: for k ¼ 1 to 27 do
17: Compute

s1 ¼ maxðaðrÞi ; bðrÞi ; cðrÞi Þ þmaxðaðrÞj ; bðrÞj ; cðrÞj Þ
� �

� n1
18: ifkvðrÞ

i � vðrÞ
j þmkk 6 s1ð1þ n�1

1 Þ then
19: Compute the minimum distance D1 using

Algorithm 2
20: ifD1 < s1 then
21: go to 5
22: end if
23: end if
24: end for
25: end for

26: Compute s2 ¼ ðmaxðaðrÞi ; bðrÞi ; cðrÞi ÞÞ � n2
27: for face ¼ 1 to 6 do
28: Compute the minimum distance D2 and D2 using

Algorithm 3
29: ifD2 < s2 then
30: go to 5
31: end if
32: end for
33: Update the volume fraction

f i ¼ f i þ ð4=3ÞpaðrÞi bðrÞi cðrÞi =LxLyLz and set i ¼ iþ 1
34: end while
35: Create periodic images of inclusions using instructions

given in Section 2.5
Algorithm 2. Minimum distance between two ellipsoids

1: for each pair of inclusions i and j (including its 26 periodic
images which centers are defined using the vectors m) do

2: Define v1 ¼ vðrÞ
i and v2 ¼ vðrÞ

j �mk with k ¼ 1 to 27

3: Define Z1 ¼ Z
ðrÞ
i and Z2 ¼ Z

ðrÞ
j

4: Set a to any value in interval 0;1½ �
5: Compute Za using (2.3.2)
6: ifdetðZaÞ > 0 then
7: D1 ¼ 0 .the two ellipsoids overlap
8: else
9: Initialize the two ball centers c1 and c2
10: c1 ¼ v1 and c2 ¼ v2 at iter ¼ 1
11: Assign the minimum distance D1 ¼ dðEi; EjÞ ¼ 0
12: Define a maximum number of iterations (maxiter)
13: whileiter <¼ maxiter do
14: Compute t1 and t2 by solving (12)
15: Compute the angles between the normals and the

vector x1 � x2
16: if\ðx2 � x1;N1Þ ¼ 0 and \ðx1 � x2;N2Þ ¼ 0 then
17: D1 ¼ kx1 � x2k
18: exit .jump out of the do loop
19: else
20: update the center of the balls:

cn ¼ xn � cn
2 Nn;n ¼ 1;2

21: end if
22: iter ¼ iter þ 1
23: end while
24: end if
25:end for
Please cite this article in press as: Anoukou K et al. Random distribution of po
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Algorithm 3. Minimum distance from an inclusion surface point
to the cell faces

1:for each inclusion i do
2: for each face do face ¼ 1 to 6
3: Compute the two points x1 and x2 where N is collinear

to n using (15)
4: Compute the minimum distance D2 ¼ min

x2ðx1 ;x2Þ
dðEi;PÞð Þ

using (16)
5: Set the closest point xmin to the solution xn which

minimizes dðEi;PÞ
6: Compute the algebraic measure of the segment defined

by the distance D2 D2 ¼ n � xmin þ g
7: end for
8:end for

Appendix B. Convergence analysis

B.1. Convergence of FFT spatial resolution

The convergence analysis in terms of the number of voxels is
conducted for three different microstructures made up of
monodisperse pores with volume fraction 20% at a fixed realiza-
tion. Cubic unit cells were generated comprising a number of pores
N ¼ 50 for microstructure with spherical pores, and N ¼ 500 for
microstructures with oblate (x ¼ 0:5) and prolate (x ¼ 2) spheroi-
dal pores.

Specifically, each microstructure was discretized with grid of
323;643;1283 and 2563 voxels. The error committed on the real
volume fraction, denoted by df , was evaluated for each discretiza-
tion (Fig. B.1ðaÞ)

df ¼ jf � f voxelj
f

ðB:1Þ

where f voxel is the volume fraction of pore voxels.

The effective bulk and shear moduli were derived from eC using

(21). The deviation of eC from isotropy, diso is evaluated for each dis-
cretization using (23) (Fig. B.1ðbÞ). The choice of a sufficient number
of voxels is determined by the convergence of df and diso to an asymp-
totic value. FollowingGhosseinandLévesque [65],we introducea tol-
erance of 3% on df and diso as a criterion of convergence. We observe

that both variables tend to converge for 1283 and 2563 voxels.

B.2. Convergence in terms of number of inclusions/pores

In this section, a convergence analysis in terms of the number of
pores was performed on microstructures with prolate (x ¼ 2) and
oblate (x ¼ 0:5) spheroidal pores with a volume fraction of 20%. At
fixed realization, cubic unit cells containing monodisperse ran-
domly distributed and oriented spheroidal pores were generated.
Each microstructure was discretized with 1283 voxels, as discussed
in the previous section.

We can observe in Fig. B.2ða; bÞ that for a number of spheroidal
pores N ¼ 500, the normalized elastic moduli ej and el do not
change significantly. In parallel, a convergence is also obtained
on the result for diso (Fig. B.2ðcÞ). Nonetheless, this converged value
does not vanish and takes values which can be rather high for
oblate voids with very low aspect ratio (Fig. 4). This implies that
further increase of very elongated inclusions might not necessarily
lead to a fully isotropic response. This point deserves further
investigation.
lydisperse ellipsoidal inclusions and homogenization estimates for porous
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Fig. B.1. Convergence analysis in terms of the number of voxels performed on three different microstructures made up of monodisperse with volume fraction 20% at fixed
realization: (a) error on the volume fraction df and (b) deviation from isotropy diso as a function of the number of voxels along each side of the unit-cell (32, 64, 128 and 256).

Fig. B.2. Convergence in terms of the number of spheroidal pores with aspect ratiosx ¼ 2 andx ¼ 0:5 conducted on monodisperse microstructures. Effective moduli and the
deviation from isotropy as a function of the number of pores (50, 100, 200, 300, 400, 500 and 1000): (a) normalized bulk modulus ej=j1, (b) shear modulus el=l1 and (c)
isotropy measure.
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B.3. Convergence in terms of realizations

Convergence of the effective moduli is studied in terms of real-
izations at fixed number of pores, volume fraction and discretiza-
tion. Monodisperse microstructures containing 50 spherical pores
(x ¼ 1) and 500 spheroidal pores with aspects ratios
Please cite this article in press as: Anoukou K et al. Random distribution of po
elastic materials. Comput Struct (2018), https://doi.org/10.1016/j.compstruc.20
x ¼ 0:5;2;5 were investigated at volume fraction 20% and dis-
cretized with 1283 voxels.

On Fig. B.3, it can be observed that the normalized effective
moduli do not significantly change for different realizations. All
reported results in the main text have been averaged over five
realizations.
lydisperse ellipsoidal inclusions and homogenization estimates for porous
18.08.006

https://doi.org/10.1016/j.compstruc.2018.08.006


Fig. B.3. Effective moduli for five different realizations of monodisperse microstructures with 50 spherical pores (x ¼ 1) and 500 spheroidal pores with aspects ratios
x ¼ 0:5;2;5 and porosity f ¼ 20%: (a) normalized bulk modulus ej=j1 and (b) shear modulus el=l1.
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